cluster-setup.md 2026-01-29

BlueHive Cluster Setup Guide

DSCC/LING 251/451 - Spring 2026

This guide covers everything you need to get started on the University of Rochester's BlueHive computing
cluster. We'll cover this in class, but you can return to this document when you set up your own account.

Before You Start: Account Setup
You will need:

1. A BlueHive account (being requisitioned - you'll receive an email)

2. Two-factor authentication (2FA) enrolled
o Enroll at: https://tech.rochester.edu/services/two-factor-authentication/
o You'll use this every time you log in

Note: If you don't have your account yet, that's expected! Follow along today, and you can do the setup
yourself once your account is active.

Part 1: Logging In
SSH Connection

From your terminal (Mac/Linux) or PowerShell (Windows), connect with:

ssh username@bluehive.circ.rochester.edu

Replace with your University NetID.
What happens:

e You'll be asked for your password (it won't show as you type)
e Then you'll get a 2FA prompt (push notification or code)
e After authenticating, you're in!

Pro tip: On Mac/Linux, you can set up SSH keys to avoid typing your password every time. Ask if you're
interested in setting this up.

Where Are You?

After logging in, you're on a login node. This is NOT where you run your code - it's just for:

¢ Navigating files
e Editing scripts
e Submitting jobs to the scheduler

1/11

cluster-setup.md 2026-01-29

Think of it like a lobby. You prepare here, but the work happens elsewhere (on compute nodes).

Part 2: File System and Storage
Two Important Directories
Run to see where you are. You start in your home directory:

There are two main places to store files:

Directory Path Quota Use for
Home 10 GB Config files (, etc.)
Scratch 200 GB Data, code, conda environments, results

Why two directories?

e Home is backed up but tiny (10 GB)
e Scratch is large (200 GB) but NOT backed up
e Put everything except config files in scratch

Check your quota:

quota

This shows how much space you're using in each location.

Set Up Your Workspace

Create a directory structure in scratch for this course:

/scratch/username
mkdir —p dscc251

dscc251
mkdir data code environments
1s -1

Navigation reminder:

. - change directory

. - go up one level

. - go to home directory

o - go back to previous directory
. - print working directory

. - list files

. - list with details and human-readable sizes

2/11

cluster-setup.md 2026-01-29

Part 3: Creating and Editing Files
You'll need to create scripts (Python, bash, etc.) on the cluster. Three main editors:

* nano - Easiest for beginners (we'll use this)
e vim - Powerful but steep learning curve
e emacs - Also powerful, different philosophy

Using nano

Create a test file:

nano hello.txt

Inside nano:

e Type your text normally
. then to save (Write Out)
. to exit

Try it: Create a file with your name and save it.

Alternatives: If you prefer, you can write code on your laptop and use to transfer:

scp myfile.py
username@bluehive.circ.rochester.edu:/scratch/username/dscc251/code/

Part 4: Slurm - The Job Scheduler
What is Slurm?

BlueHive uses Slurm (Simple Linux Utility for Resource Management) to manage jobs.
Key concepts:

¢ Login nodes: Where you are now. For light tasks only (editing, navigating)

e Compute nodes: Where your code actually runs (GPUs, lots of memory)

e Jobs: Scripts you submit to Slurm that run on compute nodes

e Partitions: Groups of nodes (we'll use for this class; partition is available if you need
GPUs)

Why not just run Python directly?

¢ Login nodes are shared by everyone - running heavy code there slows things down for all users
e Compute nodes have GPUs and more resources

3/11

cluster-setup.md

e Slurm ensures fair access to resources

Your First Slurm Job

Create a simple job script:

cd /scratch/username/dscc251/code

nano hello_world.sh

Contents of hello world.sh:

#'!'/bin/bash

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

——job—name=hello
—output=hello_%j.out
—error=hello_%j.err
—time=00:05:00
——mem=1G
——partition=standard

Job starts here

echo "Hello from compute node!"

echo "Job ID: $SLURM_JOB_ID"

echo "Running on: $(hostname)"
echo "Current directory: $(pwd)"

Simple Python test

python3 —-c "print('Python works!'")
python3 —c "import sys; print(f'Python version: {sys.version}')"

echo "Job finished!"

Submit the job:

sbatch hello_world.sh

Job name
Output file (%j = job ID)
Error file
Time limit (5 minutes)
Memory
Partition

You'll see: Submitted batch job 12345 (the job ID)

Check job status:

squeue —u username
squeue —u username -1

Job states:

e PD (Pending) - waiting for resources

Your jobs
More details

4/11

2026-01-29

cluster-setup.md 2026-01-29

¢ [(Running) - currently running
. (Completing) - finishing up
¢ Nothing listed means it's done

View results:

1s -1h # See the output files
cat hello_12345.0ut # Replace 12345 with your job ID
cat hello_12345.err # Check for errors

Useful Slurm Commands

squeue —u username # Your jobs

squeue —p standard # ALl standard jobs
scancel 12345 # Cancel job 12345
scancel -u username # Cancel ALL your jobs
sinfo -p standard # Partition info
sacct -u username # Recent job history

Part 5: Setting Up Conda (Python Environments)
Why Conda?

¢ Manage different Python versions and packages per project
¢ Avoid conflicts between project requirements

¢ Create reproducible environments

Problem: By default, conda tries to install everything in your home directory (only 10 GB!). We'll configure it
to use scratch instead.

Step 1: Load the Module

BlueHive uses "modules" to manage software. Load miniforge (conda):

module load miniforge3/25.1.1-2

Check it worked:

conda # Should show a path to conda

If you get "conda: command not found", you may need:

5/11

cluster-setup.md 2026-01-29

/software/miniforge3/25.1.1-2/bin/activate
conda

Step 2: Make it Automatic (Add to .bashrc)

You don't want to run every time you log in. Add it to your file:

nano ~/.bashrc

Add this line at the end:

module load miniforge3/25.1.1-2

What is .bashrc?

e A script that runs every time you start a new shell session
e Used for customizing your environment (aliases, loading modules, etc.)
e Lives in your home directory ()

Activate changes:

~/.bashrc

Or log out and back in.
Step 3: Initialize Conda

First time only, run:

conda init ——all

This modifies your to set up conda.

Important: You need to run this BEFORE logging out. After running , log out and log
back in for the changes to take effect.

Verify it worked:

¢ You should see at the start of your command prompt
e Run - should point to conda's Python

Step 4: Configure Conda to Use Scratch
6/11

cluster-setup.md 2026-01-29

By default, conda stores environments and packages in home. Move them to scratch:

Create conda directories in scratch
mkdir —p $SCRATCH/my-conda/envs
mkdir —p $SCRATCH/my-conda/pkgs

Tell conda to use these

conda config ——add envs_dirs $SCRATCH/my-conda/envs
conda config ——add pkgs_dirs $SCRATCH/my-conda/pkgs

Verify:

conda config ——show envs_dirs
conda config ——show pkgs_dirs

Should show your scratch paths listed first.
Step 5: Create an Environment

Create an environment for this course:

conda create -n dscc251 python=3.11 numpy pandas scikit-learn matplotlib
jupyter

Activate it:

conda activate dscc251

Your prompt should now show instead of
Check it:
which python # Should be in your scratch conda env

python —-c "import sklearn; print(sklearn.__version__)"

Deactivate when done:

conda deactivate

List all environments:

7/11

cluster-setup.md 2026-01-29

conda env list

Part 6: Using Conda in Slurm Jobs

When you submit a Slurm job, it starts a fresh shell that doesn't have your conda setup by default. You need
to activate your environment in the job script.

Boilerplate for Conda + Slurm

Here's a template for Python jobs with conda:

#!/bin/bash

#SBATCH ——job—name=my_job

#SBATCH ——output=T1logs/job_%j.out

#SBATCH ——error=1ogs/job_%j.err

#SBATCH ——time=01:00:00

#SBATCH ——mem=8G

#SBATCH ——partition=standard

#SBATCH ——partition=gpu # Use this partition if you need a GPU
#SBATCH ——gres=gpu:1l # Uncomment to request 1 GPU

Print job info

echo "Job ID: $SLURM_JOB_ID"
echo "Node: $(hostname)"
echo "Start time: $(date)"

Activate conda (module already loaded via .bashrc)
eval "$(conda shell.bash hook)"

echo "conda initialized"

conda activate dscc251

echo "environment activated"

Verify environment
echo "Python: $(which python)"
echo "Conda env: $CONDA_DEFAULT_ENV"

Run your code
cd /scratch/username/dscc251/code

python my_script.py

echo "End time: $(date)"

Key points:
. initializes conda in the job
¢ No need to since your already does this
. works normally after the hook

e Echo statements help with debugging
8/11

cluster-setup.md 2026-01-29

e Always cd to your working directory before running code
e Createa directory for output files

Test It

Create a simple Python script:

nano /scratch/username/dscc251/code/test_numpy.py

Contents:

import numpy as np

import sys

print(f"Python version: {sys.version}")
print (f"NumPy version: {np.__version__}")

Test computation
arr = np.random.rand(1000, 1000)
result = np.linalg.eigvals(arr)

print(f"Computed eigenvalues of 1000x1000 matrix")
print(f"First eigenvalue: {result[0]}")

Create a job script to runit:

nano /scratch/username/dscc251/code/run_test.sh

Use the boilerplate above, replacing with

Submit:

mkdir —-p logs # Create logs directory
sbatch run_test.sh

Check the output file to see if it worked!

Quick Reference

Essential Commands

Navigation
cd /scratch/username # Go to scratch
pwd # Where am I?

9/11

cluster-setup.md

1s -1h #
Slurm

sbatch script.sh #
squeue —u username #
scancel 12345 #
Conda

conda activate dscc251 #
conda deactivate #
conda list #
conda env list #
Modules

module load miniforge3/25.1.1-2 #
module list #
module avail #
File editing

nano file.txt #

Where to Put Things

/home/username/
/scratch/username/
dscc251/
code/
data/
logs/
results/
my—-conda/
envs/
pkgs/

Datasets

2026-01-29

List files with sizes

Submit job
Check my jobs
Cancel job

Activate environment
Deactivate

Packages in current env
All environments

Load conda
What's loaded?
What's available?

Edit with nano

Only .bashrc and small configs

Python scripts, job scripts

Slurm output files
Model outputs, figures

Conda environments
Conda packages

Troubleshooting
"conda: command not found"

e Did you run
¢ Did you log out and back in after
o Try:

"Disk quota exceeded"

e Check:
e |s stuff in home instead of scratch? Move it:
e Clean conda cache:

Job pending forever

10/11

cluster-setup.md

Check: for reason
° - cluster is busy, wait
. - other jobs have higher priority

Try a shorter time limit or less memory
Python can't find a package

e Are you in the right conda environment? Check the in your prompt
¢ Did you install it?

¢ |n Slurm job: did you activate the environment? Check the boilerplate in Part 6.

Can't find my files

e Check - are you in the right directory?
e Files in scratch?
e Tab completion is your friend: type a few letters and hit Tab

2026-01-29

Next Steps

Once your account is active:

1. Log in and verify 2FA works

2. Create your directory structure in scratch
3. Set up conda with the steps above

4. Run the hello world job to test Slurm

5. Create the environment

6. Test running Python with the numpy script

For the term project, you'll likely want to:

Clone your GitHub repo to

Create a conda environment with your dependencies

Write Slurm scripts to run experiments

Transfer results back to your laptop for analysis

Questions? Post on the course forum or come to office hours!

Additional Resources

BlueHive Documentation

Slurm Documentation
Conda Cheat Sheet
Unix tutorial: https://swcarpentry.github.io/shell-novice/

Course-specific help: See the course website for examples of running specific ML libraries (PyTorch,

scikit-learn, etc.) on the cluster.

11/11

https://tech.rochester.edu/services/bluehive/
https://slurm.schedmd.com/documentation.html
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
https://swcarpentry.github.io/shell-novice/

