Supervised Learning and Generalization

DSCC 251/451: Machine Learning with Limited Data
C.M. Downey
Spring 2026

1, UNIVERSITY+ROCHESTE

Supervised Learning Review

Supervised Learning Basics

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

e In math terms, learning a function f(x) =y

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

e In math terms, learning a function f(x) =y

e [he function is learned from a dataset of examples

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

e In math terms, learning a function f(x) =y

e [he function is learned from a dataset of examples

o D= {(Xl,)71)9 (Xz, yZ)a R (xn’ yn)}

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

e In math terms, learning a function f(x) =y

e [he function is learned from a dataset of examples

o D= {(Xl,)71)9 (Xz, yZ)a R (xn’ yn)}

e [he dataset contains pairs of inputs and outputs

EBl UNIVERSITY« ROCHESTER 3
G

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

e In math terms, learning a function f(x) =y

e [he function is learned from a dataset of examples

o D= {(Xl,)71)9 (Xz, yZ)a R (xn’ yn)}

e [he dataset contains pairs of inputs and outputs

e EX: speed — whether you get a speeding ticket

EBl UNIVERSITY« ROCHESTER 3
G

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

e In math terms, learning a function f(x) =y

e [he function is learned from a dataset of examples
® D = {(xla)’1), (Xz, yZ)a S (xna yn)}
e [he dataset contains pairs of inputs and outputs
e EX: speed — whether you get a speeding ticket

e {(30, False), (33, False), (35, False), (37, True), (39, True)}

EBl UNIVERSITY« ROCHESTER 3
G

Supervised Learning Basics

e Overall idea: learn a mapping between inputs X and outputs Y

e In math terms, learning a function f(x) =y

e [he function is learned from a dataset of examples

® D — {(xla)’1)9 (.Xz,)’2)9 ¢ oo (xna yn)}
e [he dataset contains pairs of inputs and outputs

e EX: speed — whether you get a speeding ticket

e {(30, False), (33, False), (35, False), (37, True), (39, True)}

e Goal: learn the function that best matches the dataset

EBl UNIVERSITY« ROCHESTER 3
G

Learning a Function

Learning a Function

e We want to find a function f : X — Y such that...

Learning a Function

e We want to find a function f : X — Y such that...

e V; = f(x) is "close" to the true y; for all (x;, y,) € D

Learning a Function

e We want to find a function f : X — Y such that...
e V; = f(x) is "close" to the true y; for all (x;, y,) € D

e Y, pronounced "y-hat", is the predicted value of y

EBl UNIVERSITY« ROCHESTER 4
G

Learning a Function

e We want to find a function f : X — Y such that...
o V. = f(x,) is "close" to the true y. for all (x;,y,) € D
e Y, pronounced "y-hat", is the predicted value of y

e € means 'is an element of" or just "in"

[@® 6] 0
&y UNIVERSITY* ROCHESTER 4

Learning a Function

e We want to find a function f : X — Y such that...
o V; = f(x;) is "close" to the true y; for all (x;,y,) € D
e Y, pronounced "y-hat", is the predicted value of y
e € means 'is an element of" or just "in"

e The function f also generalizes well to new data (examples not in D)

[@® 6] 0
&y UNIVERSITY* ROCHESTER 4

Learning a Function

e We want to find a function f : X — Y such that...
o V; = f(x;) is "close" to the true y; for all (x;,y,) € D
e Y, pronounced "y-hat", is the predicted value of y
e € means 'is an element of" or just "in"

e The function f also generalizes well to new data (examples not in D)

e How do we know what kind of function to learn?

EBl UNIVERSITY« ROCHESTER 4
G

Learning a Function

e We want to find a function f : X — Y such that...
o V; = f(x;) is "close" to the true y; for all (x;,y,) € D
e Y, pronounced "y-hat", is the predicted value of y
e € means 'is an element of" or just "in"

e The function f also generalizes well to new data (examples not in D)

e How do we know what kind of function to learn?

e Infinitely many to choose from

EBl UNIVERSITY« ROCHESTER 4
G

Learning a Function

e We want to find a function f : X — Y such that...
o V; = f(x;) is "close" to the true y; for all (x;,y,) € D
e Y, pronounced "y-hat", is the predicted value of y
e € means 'is an element of" or just "in"

e The function f also generalizes well to new data (examples not in D)

e How do we know what kind of function to learn?

e Infinitely many to choose from

e Solution: learn the weights of a parameterized function

EBl UNIVERSITY« ROCHESTER 4
G

Parameterized Functions

Parameterized Functions

e A learning searches for a function f in a space of possible functions

e Parameters define a family of functions that share a common form
e O: general symbol for parameters/weights (usually represents several)

e V = f(x; 0) : the function f(x), given parameters ¢

e Example: the family of linear functions f(x) = mx + b
e 0={m,b}

e This defines all possible lines (with different slopes and intercepts)

e Later: Neural Networks define their own family of functions

[@® 6] 0
&y UNIVERSITY* ROCHESTER 5

|
O
S
S
F
un
C
t
10
N

L
‘1
U
N
1V
E
R
S
1T
Y
of
R
o
C
H
E
S
T
E
R

0SS Function

e \We need a way to measure how close our parameterized function is to the
"true” input/output mapping

e |In other words, we want to measure the error of our model

EBl UNIVERSITY« ROCHESTER 6
G

0SS Function

e \We need a way to measure how close our parameterized function is to the
"true” input/output mapping

e |In other words, we want to measure the error of our model

e "Loss Function": a measure of how much the predicted output y diverges from
the true output y

o £(y,y) =(f(x,0),y)
e Common example: squared error £(3,y) = (3 — y)? ((Q: why squared?))

[@® 6] 0
&y UNIVERSITY* ROCHESTER 6

0SS Function

e \We need a way to measure how close our parameterized function is to the
"true” input/output mapping

e |In other words, we want to measure the error of our model

e "Loss Function": a measure of how much the predicted output y diverges from
the true output y

o £(y,y) =(f(x,0),y)
e Common example: squared error £(3,y) = (3 — y)? ((Q: why squared?))

e We always want to minimize the loss/error

e This is a type of optimization problem, which is a huge subfield of math

EBl UNIVERSITY« ROCHESTER 6
G

. oss Minimization

EBl UNIVERSITY« ROCHESTER 7
G

. oss Minimization

e Optimization problem: find the values of the parameters 6 that minimize
the loss function

[@® 6] 0
&y UNIVERSITY* ROCHESTER 7

. oss Minimization

e Optimization problem: find the values of the parameters 6 that minimize
the loss function

e We will view loss as a function of the parameters: £(0) := £(f(x, 0), y)

[@® 6] 0
&y UNIVERSITY* ROCHESTER 7

. oss Minimization

e Optimization problem: find the values of the parameters 6 that minimize
the loss function

e We will view loss as a function of the parameters: £(0) := £(f(x, 0), y)

e In math terms, 0™ are the optimal parameters 0* = arg min £(0)
0

EBl UNIVERSITY« ROCHESTER 7
G

. oss Minimization

e Optimization problem: find the values of the parameters 6 that minimize
the loss function

e We will view loss as a function of the parameters: £(0) := £(f(x, 0), y)

e In math terms, 0™ are the optimal parameters 0* = arg min £(0)

e Example: Linear Regression ("Least-Squares" method) 10}

m*, b* = arg mm Z ((mx; + b) — yl)2 g

co1r o N o0 O

o

Guessing a number

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

EBl UNIVERSITY« ROCHESTER 8
G

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

e ldea:

EBl UNIVERSITY« ROCHESTER 8
G

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

e ldea:

e YOU give me any input number (we'll call it x)

EBl UNIVERSITY« ROCHESTER 8
G

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

e |dea:
e YOU give me any input number (we'll call it x)

e |'ll add a secret number to it (call it 6)

EBl UNIVERSITY« ROCHESTER 8
G

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

e |dea:
e YOU give me any input number (we'll call it x)
e |'ll add a secret number to it (call it &)

e l'll tell you the output number ()

EBl UNIVERSITY« ROCHESTER 8
G

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

e |dea:
e You give me any input number (we'll call it x)
e |'ll add a secret number to it (call it 6)
e l'll tell you the output number ()

e You have to deduce the value of the secret number

EBl UNIVERSITY« ROCHESTER 8
G

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

e |dea:
e You give me any input number (we'll call it x)
e |'ll add a secret number to it (call it 6)
e l'll tell you the output number ()

e You have to deduce the value of the secret number

e What is the equation for the function that we're applying?

EBl UNIVERSITY« ROCHESTER 8
G

Guessing a number

e We'll illustrate Gradient Descent with a (very) simple number game

e (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

e |dea:
e You give me any input number (we'll call it x)
e |'ll add a secret number to it (call it 6)
e l'll tell you the output number ()

e You have to deduce the value of the secret number

e What is the equation for the function that we're applying?
oV =f(x)=x+6

EBl UNIVERSITY« ROCHESTER 8
G

Process

T@j UNIVERSITY« ROCHESTER o

Process

e Here are some input-output pairs that define our dataset:
e {(2,4),(3,5),(5,7), (8, 10)}

Process

e Here are some input-output pairs that define our dataset:
e {(2,4),(3,5),(5,7), (8, 10)}

e You can see that € = 2, but how would we learn this algorithmically?

Process

e Here are some input-output pairs that define our dataset:
o 1(2,4),(3,5),(5,7), (8, 10)}
e You can see that € = 2, but how would we learn this algorithmically?

e First define a parameterized function f(x, 0)

e Model prediction: y = f(x,0) = x+ 6

1, UNIVERSITYs

ROC

HESTE

Process
e Here are some input-output pairs that define our dataset:
o 1(2,4),(3,5),(5,7), (8, 10)}
e You can see that 6 = 2, but how would we learn this algorithmically?

e First define a parameterized function f(x, 0)
e Model prediction: y = f(x,0) = x+ 6
e Then define a loss/error function

e We'll use Squared Error: £ (y,y) = (y — y)2 = (f(x,0) — y)2

1, UNIVERSITYs

ROC

HESTE

Process

e Here are some input-output pairs that define our dataset:
e {(2,4),(3,5),(5,7), (8, 10)}
e You can see that € = 2, but how would we learn this algorithmically?
e First define a parameterized function f(x, 0)
e Model prediction: y = f(x,0) = x+ 6
e Then define a loss/error function
e We'll use Squared Error: £(3,v) = (3 — y)* = (f(x, 0) — y)?

e Lastly learn the optimal value of @ (i.e. the value that minimizes the loss)

|
O
S
S
fun
C
t
10
N

L
‘1
U
N
1V
E
R
S
I
TYof
R
o
C
H
E
S
T
E
R

.oss function

® \We cast loss as a function of the
parameter(s) &

R 10

.oss function

® \We cast loss as a function of the
parameter(s) &

o £(f(x,0),y) = (flx,0) —y)* = (x + 6 — y)

R 10

.oss function

® \We cast loss as a function of the
parameter(s) &

o £(f(x,0),y) = (flx,0) —y)* = (x + 6 — y)

e X,y are treated as constants
provided by the data

EBl UNIVERSITY« ROCHESTER 10
G

.oss function

® \We cast loss as a function of the
parameter(s) &

o £(f(x,0),y) = (flx,0) —y)* = (x + 6 — y)

e X,y are treated as constants
provided by the data

e Plug in the datapoint (x = 2, y = 4)

1, UNIVERSITYs

ROC

HESTE

10

.oss function

® \We cast loss as a function of the
parameter(s) &

o £(f(x,0),y) = (flx,0) —y)* = (x + 6 — y)

e X,y are treated as constants
provided by the data

e Plug in the datapoint (x = 2, y = 4)

® /(f(x,0),y)=(x+0—-y)Y=Q2+0—-4)7>=(0-2)

1, UNIVERSITYs

ROC

HESTE

10

.oss function

® \We cast loss as a function of the
parameter(s) &

o £(f(x,0),y) = (flx,0) —y)* = (x + 6 — y)

e X,y are treated as constants
provided by the data

e Plug in the datapoint (x = 2, y = 4)
® /(f(x,0),y)=(x+0—-y)=Q2+0-4)7"=(0-2)

e \We can plot this loss curve!

EBl UNIVERSITY« ROCHESTER 10
G

.oss function

® \We cast loss as a function of the
parameter(s) &

o £(f(x,0),7) = (fix,0) = »)? = (x + 0 =y

e X,y are treated as constants
provided by the data

e Plug in the datapoint (x = 2, y = 4)

@ /(f(x,0),y)=(x+0—-y)Y=Q2+0—-4)7>=(0-2)

e \We can plot this loss curve!

Bl UNIVERSITY ROCHESTER 10
O/

.oss function

10
f
+
8
A
6
4
2
2 0 2 4 6
-2
E UNIVERSITY ROCHESTER 11

.oss function

e [his curve shows the properties we
expect

®» 1 + %

e Loss is minimized where @ = 2

e Loss grows large the farther @ is from
the true value

[@6)] 0
&y UNIVERSITY* ROCHESTER 'I 'I

.oss function

e [his curve shows the properties we
expect

®» 1+ %

e Loss is minimized where @ = 2

e Loss grows large the farther @ is from
the true value

e Gradient Descent idea: minimize loss
by following the slope (i.e.
"gradient") of the loss function

d(e 2)? =20—4
® 40 -

Bl UNIVERSITY ROCHESTER 11
O/

.oss function

e [his curve shows the properties we
expect

> 1+ %

e Loss is minimized where @ = 2

e Loss grows large the farther @ is from
the true value

e Gradient Descent idea: minimize loss
by following the slope (i.e.
"gradient") of the loss function

d(e 2)? =20—4
® 40 -

Bl UNIVERSITY ROCHESTER 11
O/

.oss function

\

N

NS

C'(y,y) =20—-4

£(35.y) = (6 - 27

T8 UNIVERSITY» ROCHESTER

{IMELIORA J7

) O/

12

.oss function

e NOTE.: for this example, every datapoint
gives us the exact same loss curve

o (0—=2)Y=2+60-4)Y

> 1+ W

o =(3+6-5)
o =(5+60-7)°
® ..ctlc.

£(P,y) = (0 —2)°
C'(y,y) =20—-4

EE UNIVERSITY» ROCHESTER 12
\ O/

.oss function

e NOTE.: for this example, every datapoint
gives us the exact same loss curve

o (0—=2)Y=2+60-4)Y

> 1+ %

o =(3+6-5)
o =(5+60-7)°
® ..ctlc.

e This is NOT always the case

e Will show an example later on

£(P,y) = (0 —2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 12
O/

.oss function

e NOTE.: for this example, every datapoint
gives us the exact same loss curve

o (0—=2)Y=2+60-4)Y

o =(3+6-5)
o =(5+60-7)°
® ..ctlc.

e This is NOT always the case

e Will show an example later on

e For this example ONLY, solving for one
datapoint solves the whole problem

®» 1+ %

£(P,y) = (0 —2)°
C'(y,y) =20—-4

1, UNIVERSITY+* ROCHESTER

12

Gradient Descent (first try)

2 4 6

| 2@y =027
C'(y,y) =20—-4

ER ‘|3

Gradient Descent (first try)

e (Gradient Descent is an iterative
algorithm

e l.e. you repeatedly adjust @ until the
loss Is minimized

£(P,y) = (0 —2)°
C'(y,y) =20—-4

[@® 6] 0
&y UNIVERSITY* ROCHESTER 'I 3

Gradient Descent (first try)

e (Gradient Descent is an iterative
algorithm

e l.e. you repeatedly adjust @ until the
loss Is minimized

e The initial value of & is a design
choice

e Sometimes randomly initialized

e Sometimes set to zero :
£(P,y) = (0 —2)°
C'(y,y) =20—-4

e We'll start with @ = 5

EBl UNIVERSITY« ROCHESTER 13
G

Gradient Descent (first try)

e (Gradient Descent is an iterative
algorithm

e l.e. you repeatedly adjust @ until the
loss Is minimized

e The initial value of & is a design
choice

e Sometimes randomly initialized

e Sometimes set to zero :
£(P,y) = (0 —2)°
C'(y,y) =20—-4

e We'll start with @ = 5

EBl UNIVERSITY« ROCHESTER 13
G

Gradient Descent (first try)

2 4 6

| 2@y =027
C'(y,y) =20—-4

R4

Gradient Descent (first try)

e At each step of the algorithm:

2 4 6

| £G.y) =(0-2)

C'(y,y) =20—-4

R4

Gradient Descent (first try)

e At each step of the algorithm:

e Calculate the slope at the current point

£(P,y) = (0 —2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 14
O/

Gradient Descent (first try)

e At each step of the algorithm:

e Calculate the slope at the current point

e Adjust @ by the negative of the slope
(because we want to minimize the
function)

£(P,y) = (0 —2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 14
O/

Gradient Descent (first try)

e At each step of the algorithm:

e Calculate the slope at the current point

e Adjust @ by the negative of the slope
(because we want to minimize the
function)

e First step:

£(P,y) = (0 —2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 14
O/

Gradient Descent (first try)

e At each step of the algorithm:

e Calculate the slope at the current point

e Adjust @ by the negative of the slope
(because we want to minimize the
function)

e First step:

e Plug in @ to derivative:

£(P,y) = (0 —2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 14
O/

Gradient Descent (first try)

e At each step of the algorithm:

e Calculate the slope at the current point

e Adjust @ by the negative of the slope
(because we want to minimize the
function)

e First step:

e Plug in @ to derivative:
e2-5—4=6

£(P,y) = (0 —2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 14
O/

Gradient Descent (first try)

e At each step of the algorithm:

e Calculate the slope at the current point

®» 1+ %

e Adjust @ by the negative of the slope
(because we want to minimize the
function)

e First step:
e Plug in @ to derivative:
o2-5—4=6
e Update 0:

£(P,y) = (0 —2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 14
O/

Gradient Descent (first try)

e At each step of the algorithm:
e Calculate the slope at the current point

e Adjust @ by the negative of the slope
(because we want to minimize the
function)

e First step:
e Plug in @ to derivative:
e2:-5—4=6
e Update 0:
o0, =0,—6=—1

®» 1+ %

£(P,y) = (0 —2)°
C'(y,y) =20—-4

1, UNIVERSITY+* ROCHESTER

14

Gradient Descent (first try)

e At each step of the algorithm:
e Calculate the slope at the current point

e Adjust @ by the negative of the slope
(because we want to minimize the
function)

e First step:
e Plug in @ to derivative:
e2:-5—4=6
e Update 0:
o0, =0,—6=—1

®» 1+ %

£(P,y) = (0 —2)°
C'(y,y) =20—-4

1, UNIVERSITY+* ROCHESTER

14

Gradient Descent (first try)

\

2 4 6

| £G.y) =(0-2)

C'(y,y) =20—-4

ER]5

Gradient Descent (first try)

e Second step:

\

2 4 6

| £G.y) =(0-2)

C'(y,y) =20—-4

ER]5

Gradient Descent (first try)

e Second step:

e Plugin new 0;:

\

2 4 6

| £G.y) =(0-2)

C'(y,y) =20—-4

ER]5

Gradient Descent (first try)

e Second step:

e Plugin new 0;:
o 2-(—1)—4=-6

\

| £6.y)=©-27

C'(y,y) =20—-4

R 15

Gradient Descent (first try)

e Second step:
e Plugin new 0;:
o 2:-(—1)—4=-06
e Update 0:

\

C'(y,y) =20—-4

| £6.y)=©-27

L, UNIVERSITYROCHESTER

15

Gradient Descent (first try)

e Second step:
e Plugin new 0;:
o 2:-(—1)—4=-6
e Update 0:
o0, =0 —(—6)=>5

\

C'(y,y) =20—-4

| £6.y)=©-27

L, UNIVERSITYROCHESTER

15

Gradient Descent (first try)

e Second step:
e Plugin new 0;:
o 2:-(—1)—4=-6
e Update 0:
o0, =0 —(—6)=>5

e Whoops! We're back where we
started!

\

£(35.y) = (6 - 27

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

15

Gradient Descent (first try)

e Second step: \

e Plugin new 0;:

o 2:(—1)—4=-6
e Update 0:

o0, =0 —(—6)=>5

e Whoops! We're back where we
started!

e [his process would "bounce back and

3 — (0 _ I\2
forth" forever! C(y,y) = (0—-12)

£(§,y) =204

Bl UNIVERSITY ROCHESTER 15
O/

Gradient Descent (first try)

e Second step: \

e Plugin new 0;:

o 2:(—1)—4=-6
e Update 0:

o0, =0 —(—6)=>5

e Whoops! We're back where we
started!

e [his process would "bounce back and

3 — (0 _ I\2
forth" forever! C(y,y) = (0—-12)

£(§,y) =204

Bl UNIVERSITY ROCHESTER 15
O/

Gradient Descent (second try)

2 4 6

| 6.y =0 -27
C'(y,y) =20—-4

ER]6

Gradient Descent (second try)

e What if we adjusted 6 by a fraction
of the slope? (Say, 0.75)

C'(y,y) =20—-4

| £6.y)=©-27

@ ()
{MELIORAJy

\ O/

R 16

Gradient Descent (second try)

e What if we adjusted 6 by a fraction
of the slope? (Say, 0.75)

e Let's start again:

£(35.y) = (6 - 27

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

16

Gradient Descent (second try)

e What if we adjusted 6 by a fraction
of the slope? (Say, 0.75)

e Let's start again:

e Plug in 6, to derivative:

£(35.y) = (6 - 27

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

16

Gradient Descent (second try)

e What if we adjusted 6 by a fraction
of the slope? (Say, 0.75)

e Let's start again:

e Plug in 6, to derivative:
02:-5—4=06

£(35.y) = (6 - 27

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

16

Gradient Descent (second try)

e What if we adjusted 6 by a fraction
of the slope? (Say, 0.75)

e Let's start again:
e Plug in 6, to derivative:
e2:-5—4=6
e Update 6:

£(35.y) = (6 - 27

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

16

Gradient Descent (second try)

e What if we adjusted 6 by a fraction
of the slope? (Say, 0.75)

e Let's start again:
e Plug in 6, to derivative:
e2:-5—4=6
e Update 6:
00, =0,—0.75-6=0.5

£(P,y) = (0 —2)°
C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

16

Gradient Descent (second try)

e What if we adjusted 6 by a fraction
of the slope? (Say, 0.75)

e Let's start again:
e Plug in 6, to derivative:
e2:-5—4=6
e Update 6:
00, =0,—0.75-6=0.5

£(P,y) = (0 —2)°
C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

16

Gradient Descent (second

try)

NG

2 4 6

IRACAIE

(6 —2)°

C'(y,y) =20—-4

ER ‘|7

Gradient Descent (second try)

e Second step:

2 4 6

NG

| 0Ly =

(6 —2)°

C'(y,y) =20—-4

ER ‘|7

Gradient Descent (second try)

e Second step:

e Plug in 0, to derivative:

C

A

(6 —2)°

£(§,y) =204

L, UNIVERSITYROCHESTER

17

Gradient Descent (second try)

e Second step:

e Plug in 0, to derivative:
02:-05—-4=-3

C

A

(6 —2)°

£(§,y) =204

L, UNIVERSITYROCHESTER

17

Gradient Descent (second try)

e Second step:
e Plug in 0, to derivative:
02:-05—-4=-73
e Update 6:

C

A

(6 —2)°

£(§,y) =204

L, UNIVERSITYROCHESTER

17

Gradient Descent (second try)

e Second step:
e Plug in 0, to derivative:
02:-05—-4=-73
e Update 6:
o0, =0 —0.75-(=3) =225

C

£y, y) =

(6 —2)°

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

R 17

Gradient Descent (second try)

e Second step:
e Plug in 0, to derivative:
02:-05—-4=-73
e Update 6:
o0, =0 —0.75-(=3) =225

S

£(9,y) = (0 -2)°

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

R 17

Gradient Descent (second try)

e Second step:
e Plug in 0, to derivative:
02:-05—-4=-73
e Update 6:
o0, =0 —0.75-(=3) =225

e (This is looking better)

S

£(35.y) = (6 - 27

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

R 17

Gradient Descent (second try)

| 6.y =0 -27
C'(y,y) =20—-4

ER ‘|8

Gradient Descent (second try)

e [hird step:
e Plug in 6, to derivative:
02:225-4=0.5
e Update 6:
e 0,=0,—-0.75-0.5=1.875

\F

£(9,y) = (0 -2)°

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

R 18

Gradient Descent (second try)

e [hird step:
e Plug in 6, to derivative:
02:225-4=0.5
e Update 6:
e 0,=0,—-0.75-0.5=1.875

S

£(3,y) =(0—2)°
C'(y,y) =20—-4

m
{MELIORAJy

\ O/

R 18

Gradient Descent (second try)

e [hird step:
e Plug in 6, to derivative:
02:225-4=0.5
e Update 6:
e 0,=0,—-0.75-0.5=1.875

e Loss gets lower with every step! @ \‘

£(3,y) =(0—2)°
C'(y,y) =20—-4

m
{MELIORAJy

\ O/

R 18

Gradient Descent (second try)

e [hird step:
e Plug in 6, to derivative:
02:225—-4=0.
e Update 6:
e 0,=0,—-0.75-0.5=1.875
e Loss gets lower with every step!

e O gets arbitrarily close to the
optimal value with more steps

S

£(,y) = (0 27

C'(y,y) =20—-4

m
{MELIORAJy

\ O/

UNIVERSITYsROCHESTER

18

Learning Rate

\

N

N

| 26,y =0 -2)
C'(y,y) =20—-4

R 19

Learning Rate

e [he fraction by which we multiplied our
adjustment is called the Learning Rate

£(3,y) =(0—2)°
C'(y,y) =20—-4

EE UNIVERSITY» ROCHESTER 19
\ O/

Learning Rate

e [he fraction by which we multiplied our
adjustment is called the Learning Rate

> 1+ %

e In practice, LR is chosen by trial and
error (called "tuning")

£(3,y) =(0—2)°
C'(y,y) =20—-4

Bl UNIVERSITY ROCHESTER 19
O/

Learning Rate

e [he fraction by which we multiplied our
adjustment is called the Learning Rate

®» 1+ %

e In practice, LR is chosen by trial and
error (called "tuning")

e Risks of different values

e [00 high — "bouncing around" and
missing an optimum T S R \‘ |
e 00 low — taking many steps to reach _ 0 :
the optimum f(j} y) — (9 _ 2)2
C£G,y) =204

Bl UNIVERSITY ROCHESTER 19
O/

Supervised Paradigms

TER 2 O

Supervised Paradigms

e Classification: model outputs discrete categories
e E.g. binary classification: spam/not-spam, human/bot, true/false
e Multi-class: dog/cat/other, choosing word from finite vocabulary
e Almost always outputs a probability distribution

e Often achieved with the sigmoid or softmax function

R 20

Supervised Paradigms

e Classification: model outputs discrete categories
e E.g. binary classification: spam/not-spam, human/bot, true/false
e Multi-class: dog/cat/other, choosing word from finite vocabulary
e Almost always outputs a probability distribution
e Often achieved with the sigmoid or softmax function
e Regression: model outputs a continuous number

e E.g. predicting the price of a house, sales numbers

EBl UNIVERSITY« ROCHESTER 20
G

Model Families (non-exhaustive)

TER 2 'I

Model Families (non-exhaustive)

e Linear: output decided from linear combination of input features
e Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM
e Feature weights tend to be fairly interpretable

e Strong baseline to try out with limited data!

EBl UNIVERSITY« ROCHESTER 21
G

Model Families (non-exhaustive)

e Linear: output decided from linear combination of input features
e Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM
e Feature weights tend to be fairly interpretable
e Strong baseline to try out with limited data!
e Tree-based: branching decision processes based on input features
e Examples: Decision Tree, Random Forest

e Single trees tend to overfit to small data (Random Forest helps)

EBl UNIVERSITY« ROCHESTER 21
G

Model Families (non-exhaustive)

e Linear: output decided from linear combination of input features
e Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM
e Feature weights tend to be fairly interpretable
e Strong baseline to try out with limited data!
e Tree-based: branching decision processes based on input features
e Examples: Decision Tree, Random Forest
e Single trees tend to overfit to small data (Random Forest helps)
e Neural Networks: hierarchical non-linear transformations of input features
e Examples: Feedforward, CNNs, RNNs, Transformers, etc.

e Quickly overfit to limited data (without regularization + other tricks)

1, UNIVERSITY+* ROCHESTER

2]

Model Generalization

TER 2 2

V]
L
D
a
a
S
et S
P
it
S

L
‘1
U
N
1V
E
R
S
I
TYof
R
o
C
H
E
S
T
E
R

ML Dataset Splits

e Reminder: we usually split our dataset into multiple subsets

ER 23

ML Dataset Splits

e Reminder: we usually split our dataset into multiple subsets

e Training: the data that the model actually uses to learn / optimize for

B UNIVERSITY#ROCHESTER 913

\ O/

ML Dataset Splits

e Reminder: we usually split our dataset into multiple subsets
e Training: the data that the model actually uses to learn / optimize for
e Test: data that is held-out until the model is fully trained

e [ests generalization to completely unseen data

e Important not to touch until the end!

EBl UNIVERSITY« ROCHESTER 23
G

ML Dataset Splits

e Reminder: we usually split our dataset into multiple subsets

e Training: the data that the model actually uses to learn / optimize for

e Test: data that is held-out until the model is fully trained
e [ests generalization to completely unseen data
e Important not to touch until the end!

e "Development”/"Validation": used during training to tune generalization
e Also held-out (not actually seen by model during training)

e Used to help tune hyperparameters and detect overfitting

EBl UNIVERSITY« ROCHESTER 23
G

ML Dataset Splits

e Reminder: we usually split our dataset into multiple subsets
e Training: the data that the model actually uses to learn / optimize for
e Test: data that is held-out until the model is fully trained
e [ests generalization to completely unseen data
e Important not to touch until the end!
e "Development”/"Validation": used during training to tune generalization
e Also held-out (not actually seen by model during training)
e Used to help tune hyperparameters and detect overfitting

e \What is overfitting?

EBl UNIVERSITY« ROCHESTER 23
G

What Overfitting Looks Like
Training loss keeps improving, but validation loss increases

== Training == Validation

2.0 ',
I
]
]
]
| E : Overfitting region
]
I
|
]
9) 1
3 1.0 }
]
]
I
t t
- Swee1 spg
(early stopping)
I
i
0.0
0 25 50 /5 100

[TY*ROCHESTER 2 4

Training Epoch

The Generalization Gap Depends on Data Size
This is the fundamental picture of the course

“©= Test Error =@ Training Error

Small n region Large n region
High overfitting risk Better generalization

0.6
o)
w 0.4
oC
S
L1

0.2

0.0

10 50 100 500 1K 5K

Number of Training Examples (n) STER 25

Why does overfitting happen?

What Overfitting Looks Like
Training loss keeps improving, but validation loss increases

=== Training == Validation

2.0
15 Overfitting region
B
9 1.0
0.5 Sweet spot
| (early stopping)
0.0

0 25 50 75 100
Training Epoch

EE UNIVERSITY» ROCHESTER 26
O

Why does overfitting happen?

e Model overfitting depends on two What Overfitting Looks Like
Training loss keeps improving, but validation loss increases
key faCtorS: === Training == Validation
e Data size: how much data is there to 20

learn from?

1.5 Overfitting region
e Model complexity: what capacity
does the model have to fit complex €10
patterns?
05 Sweet spot
(early stopping)
0.0

0 25 50 75 100
Training Epoch

Bl UNIVERSITY ROCHESTER 26
O/

Why does overfitting happen?

e Model overfitting depends on two What Overfitting Looks Like
Training loss keeps improving, but validation loss increases
key faCtorS: === Training == Validation
e Data size: how much data is there to 20

learn from?

1.5 Overfitting region

e Model complexity: what capacity
does the model have to fit complex €10
patterns?

Sweet spot

0.5 '
(early stopping)

e [he latter is classically demonstrated
with polynomial regression (next slide) oo

0 25 50 75 100
Training Epoch

[@® 6] 0
&y UNIVERSITY* ROCHESTER 2 6

Model Complexity vs. Overfitting
Blue = training data, Orange = test data, Dashed = true function

° Degree 1 ° Degree 4

Train: 0.011
Test: 0.100
Good fit

° Degree 8

Train: 0.000
Test: 2.173
Severe overfitting

IVERSITYs ROCHESTER 2 7

B
|a
S
a
N
d
Vari
1a
N
C
e

L
‘1
U
N
1V
E
R
S
I
TYof
R
o
C
H
E
S
T
E
R

Bias and Variance

e Bias: the error stemming from model assumptions
e Example: fitting a linear regression to non-linear data

e Intuition: a model's lack of flexibility, leading to under-fitting the data

EBl UNIVERSITY« ROCHESTER 28
G

Bias and Variance

e Bias: the error stemming from model assumptions

e Example: fitting a linear regression to non-linear data

e Intuition: a model's lack of flexibility, leading to under-fitting the data
e Variance: the error from sensitivity to noise in the training data

e Example: fitting a large neural network to limited data

e Intuition: if we randomly re-sampled the training data, how much would the
model's outputs change?

EBl UNIVERSITY« ROCHESTER 28
G

Bias and Variance

e Bias: the error stemming from model assumptions

e Example: fitting a linear regression to non-linear data

e Intuition: a model's lack of flexibility, leading to under-fitting the data
e Variance: the error from sensitivity to noise in the training data

e Example: fitting a large neural network to limited data

e Intuition: if we randomly re-sampled the training data, how much would the
model's outputs change?

e Bias and Variance inherently form a tradeoff - we can't minimize both at once

EBl UNIVERSITY« ROCHESTER 28
G

Bias and Variance

B

dh
N

Tolerance Limit

A
A

-

A
SRS

“
.

o
o O
o
| O

TER 2 9

high bias
low variance

Bias and Variance

B

dh
N

Tolerance Limit

A
A

-

A
SRS

“
N

o
o O
o
| O

ER 29

high bias
low variance

Bias and Variance

B

dh
N

Tolerance Limit

A
A

-

A
SRS

“
N

o
o O
o
| O

high bias
high variance

ER 29

high bias
low variance

low bias
low variance

Bias and Variance

B

dh
N

Tolerance Limit

A
A

-

b
N

“
N

o
o O
o
| O

high bias
high variance

ER 29

high bias
low variance

low bias
low variance

Bias and Variance

B

dh
N

Tolerance Limit

-~

A
A

A
SRS

“
N

o
o O
o
| O

high bias
high variance

low bias
high variance

ER 29

Error

1.5

1.0

0.5

0.0

The Bias-Variance Tradeoff
Total error is minimized at intermediate complexity

== Bigs? === Total Error == Variance

High bias

fitti 3
\ (Underfitting) Sweejt Spot

High variance
(Overfitting)

0.0 2.5 5.0
Model Complexity

7.5

10.0

[TYsROCHESTER

30

Mitigating Overfitting

TER 3 'I

R
e
g
u
la
riza
t
10
N

L
‘1
U
N
1V
E
R
S
I
TYof
R
o
C
H
E
S
T
E
R

Regularization

e Many techniques mitigate overfitting by preferring simpler solutions

Regularization

e Many techniques mitigate overfitting by preferring simpler solutions

e L2 Regularization: penalizes large weights
e Based on the "L2 Norm" (Euclidian Distance) of the weight vector

e Strength controlled by hyperparameter A: loss += /126’1.2

B UNIVERSITY¥ROCHESTER 39

\ O/

Regularization

e Many techniques mitigate overfitting by preferring simpler solutions

e L2 Regularization: penalizes large weights
e Based on the "L2 Norm" (Euclidian Distance) of the weight vector

e Strength controlled by hyperparameter A: loss += /126’1.2

e L1 Regularization: penalizes large weights (in a different way)
e Based on "L1 Norm" aka "Manhattan Distance" of the weight vector

e Tends to drive some weights to zero (creating a sparse model)
o loss +=12| 0|

EBl UNIVERSITY« ROCHESTER 32
G

L1 and L2 Visualized

EBl UNIVERSITY« ROCHESTER 33
G

L1 and L2 Visualized

@ @) o
i UNIVERSITY*ROCHESTER 3 3

L1 and L2 Visualized

@) .
Y UNIVERSITY ROCHESTER 3 3

\/ v‘ﬂ,. \/ v‘ﬂ,.
K KR 3

S-S

(a) Standard Neural Network

(b) Network after Dropout

Dropout

e Mostly used in neural networks (or other
models with many parameters)

(a) Standard Neural Network (b) Network after Dropout

E UNIVERSITY ROCHESTER 34

Dropout

e Mostly used in neural networks (or other
models with many parameters)

e During training (not evaluation),
randomly set some layer outputs to zero

e Parameterized by the proportion of outputs
to drop (eg 10%, 20%)

(a) Standard Neural Network (b) Network after Dropout

EE UNIVERSITY» ROCHESTER 34
\ O/

Dropout

e Mostly used in neural networks (or other
models with many parameters)

e During training (not evaluation),
randomly set some layer outputs to zero

e Parameterized by the proportion of outputs
to drop (eg 10%, 20%)

e Forces the network to use redundant
represe ntations (a) Standard Neural Network (b) Network after Dropout

e Put another way, avoids memorizing
examples with single parameters

[@® 6] 0
&y UNIVERSITY* ROCHESTER 3 4

O
th
e
r
T
e
ch
N
Iq
u
e
S

L
‘1
U
N
1V
E
R
S
I
TYof
R
o
C
H
E
S
T
E
R

Other Techniques

e Early stopping: stop training when the validation loss stops decreasing
e Simple idea, almost always used

e Often will define a patience: i.e. "if my val. loss doesn't decrease for X
steps..."

EBl UNIVERSITY« ROCHESTER 35
G

Other Techniques

e Early stopping: stop training when the validation loss stops decreasing
e Simple idea, almost always used

e Often will define a patience: i.e. "if my val. loss doesn't decrease for X
steps..."

e Model Ensembles: average the results of multiple models

e Reduces variance; also kind of the plot of The Minority Report

R 35

Other Techniques

e Early stopping: stop training when the validation loss stops decreasing
e Simple idea, almost always used

e Often will define a patience: i.e. "if my val. loss doesn't decrease for X
steps..."

e Model Ensembles: average the results of multiple models
e Reduces variance; also kind of the plot of The Minority Report

e Data Augmentation: more later; idea is to artificially expand the training
set

EBl UNIVERSITY« ROCHESTER 35
G

10N

Cross-Validati

Final point

5-Fold Cross-Validation

Role B Training | Validation

Each fold serves as validation exactly once

uonessy AD

Data Sample

=
=

36

B UNIVERSITY+ ROCHESTER

Final point: Cross-Validation

e If your val/test set is very small, won't it

@
O
c
o
>
O
o
P
[O)
c
c O
O
..nw...nlu
©
9 >
(7))
nVaa
5 8
»w
O o
—
O -
o 9O
O
O
L g
O L

be a noisy estimate?

B Validation

. Training

Role

Data Sample

Final point: Cross-Validation

e If your val/test set is very small, won't it

®
O
-
o
>
©
©
4
)
c
c O
O
..nw...nlu
©
9 >
N
L w
5 8
»n 2
O o
= »
O -
T 2
O
O
U 3
O LW

be a noisy estimate?

B Validation

. Training

Role

e Solution: split into K "folds", use each

as test in turn

e |.e. train on all the other folds, validate

on the held-out fold

e Do this K times, then average the result

Data Sample

36

Final point: Cross-Validation

e If your val/test set is very small, won't it
be a nOiSy QStimate? E;I;?Ifglf sr;)r?/js\;i"\?aiggt?on exactly once

e Solution: split into K "folds", use each
as test in turn

e |.e. train on all the other folds, validate
on the held-out fold

CV lteration
w

e Do this K times, then average the result

e Gives a more reliable estimate of
generalization

R 36

5-Fold Cross-Validation

Role B Training B Validation
Data Sample

Each fold serves as validation exactly once

uoneIs} AD

[
=3}
=
9]
23]
o»
%
~
S
>
=
&
=
W
Z
)
& 3)
B2

37

(MELIORAJ

