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Supervised Learning Basics
● Overall idea: learn a mapping between inputs  and outputs X Y
● In math terms, learning a function f(x) = y

● The function is learned from a dataset of examples

● D = {(x1, y1), (x2, y2), . . . (xn, yn)}
● The dataset contains pairs of inputs and outputs

● Ex: speed  whether you get a speeding ticket→
● {(30, False), (33, False), (35, False), (37, True), (39, True)}

● Goal: learn the function that best matches the dataset
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Learning a Function
● We want to find a function  such that...f : X → Y
●  is "close" to the true  for all ̂yi = f(xi) yi (xi, yi) ∈ D

● , pronounced "y-hat", is the predicted value of ̂y y

●  means "is an element of" or just "in"∈

● The function  also generalizes well to new data (examples not in D)f

● How do we know what kind of function to learn?

● Infinitely many to choose from

● Solution: learn the weights of a parameterized function
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Parameterized Functions
● A learning searches for a function  in a space of possible functions

● Parameters define a family of functions that share a common form

● : general symbol for parameters/weights (usually represents several)

●  : the function , given parameters 

● Example: the family of linear functions 

●
● This defines all possible lines (with different slopes and intercepts)

● Later: Neural Networks define their own family of functions

f

θ
̂y = f(x; θ) f(x) θ

f(x) = mx + b
θ = {m, b}
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● We need a way to measure how close our parameterized function is to the 
"true" input/output mapping

● In other words, we want to measure the error of our model

● "Loss Function": a measure of how much the predicted output  diverges from 
the true output 

●

● Common example: squared error  ((Q: why squared?))

̂y
y

ℓ( ̂y, y) = ℓ( f(x, θ), y)
ℓ( ̂y, y) = ( ̂y − y)2

● We always want to minimize the loss/error

● This is a type of optimization problem, which is a huge subfield of math
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Loss Minimization
● Optimization problem: find the values of the parameters  that minimize 

the loss function
θ

● We will view loss as a function of the parameters: ℓ(θ) := ℓ( f(x, θ), y)

● In math terms,  are the optimal parametersθ*

● Example: Linear Regression ("Least-Squares" method)

7

θ* = arg min
θ

ℓ(θ)

m*, b* = arg min
m,b ∑

i

((mxi + b) − yi)2
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Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

● You give me any input number (we'll call it )x

● I'll add a secret number to it (call it )θ

● I'll tell you the output number ( )y
● You have to deduce the value of the secret number

● What is the equation for the function that we're applying?

● ̂y = f(x) = x + θ

8
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Process
● Here are some input-output pairs that define our dataset:

● {(2, 4), (3, 5), (5, 7), (8, 10)}

● You can see that , but how would we learn this algorithmically?θ = 2

● First define a parameterized function 

● Model prediction: 

f(x, θ)
̂y = f(x, θ) = x + θ

● Then define a loss/error function

● We'll use Squared Error: ℓ( ̂y, y) = ( ̂y − y)2 = ( f(x, θ) − y)2

● Lastly learn the optimal value of  (i.e. the value that minimizes the loss)θ

9
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Loss function
● NOTE: for this example, every datapoint 

gives us the exact same loss curve

●

●

●
● ...etc.

(θ − 2)2 = (2 + θ − 4)2

= (3 + θ − 5)2

= (5 + θ − 7)2

● This is NOT always the case
● Will show an example later on

● For this example ONLY, solving for one 
datapoint solves the whole problem
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● Second step:
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● Update :θ

● θ2 = θ1 − 0.75 ⋅ (−3) = 2.25
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Gradient Descent (second try)
● Second step:

● Plug in  to derivative:θ1

● 2 ⋅ 0.5 − 4 = − 3

● Update :θ

● θ2 = θ1 − 0.75 ⋅ (−3) = 2.25

● (This is looking better)
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Gradient Descent (second try)
● Third step:

● Plug in  to derivative:

●
● Update :

●

θ2

2 ⋅ 2.25 − 4 = 0.5
θ

θ3 = θ2 − 0.75 ⋅ 0.5 = 1.875
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● Third step:

● Plug in  to derivative:

●
● Update :

●

θ2

2 ⋅ 2.25 − 4 = 0.5
θ

θ3 = θ2 − 0.75 ⋅ 0.5 = 1.875

● Loss gets lower with every step!
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Gradient Descent (second try)
● Third step:

● Plug in  to derivative:

●
● Update :

●

θ2

2 ⋅ 2.25 − 4 = 0.5
θ

θ3 = θ2 − 0.75 ⋅ 0.5 = 1.875

● Loss gets lower with every step!

●  gets arbitrarily close to the 
optimal value with more steps
θ
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Learning Rate
● The fraction by which we multiplied our 

adjustment is called the Learning Rate
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Learning Rate
● The fraction by which we multiplied our 

adjustment is called the Learning Rate

● In practice, LR is chosen by trial and 
error (called "tuning")
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Learning Rate
● The fraction by which we multiplied our 

adjustment is called the Learning Rate

● In practice, LR is chosen by trial and 
error (called "tuning")

● Risks of different values

● Too high  "bouncing around" and 
missing an optimum

● Too low  taking many steps to reach 
the optimum

→

→
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Supervised Paradigms
● Classification: model outputs discrete categories

● E.g. binary classification: spam/not-spam, human/bot, true/false

● Multi-class: dog/cat/other, choosing word from finite vocabulary

● Almost always outputs a probability distribution

● Often achieved with the sigmoid or softmax function
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● Classification: model outputs discrete categories

● E.g. binary classification: spam/not-spam, human/bot, true/false

● Multi-class: dog/cat/other, choosing word from finite vocabulary

● Almost always outputs a probability distribution

● Often achieved with the sigmoid or softmax function

● Regression: model outputs a continuous number

● E.g. predicting the price of a house, sales numbers
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● Linear: output decided from linear combination of input features

● Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM

● Feature weights tend to be fairly interpretable

● Strong baseline to try out with limited data!
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Model Families (non-exhaustive)
● Linear: output decided from linear combination of input features

● Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM

● Feature weights tend to be fairly interpretable

● Strong baseline to try out with limited data!

● Tree-based: branching decision processes based on input features

● Examples: Decision Tree, Random Forest

● Single trees tend to overfit to small data (Random Forest helps)

● Neural Networks: hierarchical non-linear transformations of input features

● Examples: Feedforward, CNNs, RNNs, Transformers, etc.

● Quickly overfit to limited data (without regularization + other tricks)
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ML Dataset Splits
● Reminder: we usually split our dataset into multiple subsets

● Training: the data that the model actually uses to learn / optimize for

● Test: data that is held-out until the model is fully trained

● Tests generalization to completely unseen data

● Important not to touch until the end!

● "Development"/"Validation": used during training to tune generalization

● Also held-out (not actually seen by model during training)

● Used to help tune hyperparameters and detect overfitting

● What is overfitting?

23
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Why does overfitting happen?
● Model overfitting depends on two 

key factors:

● Data size: how much data is there to 
learn from?

● Model complexity: what capacity 
does the model have to fit complex 
patterns?
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Why does overfitting happen?
● Model overfitting depends on two 

key factors:

● Data size: how much data is there to 
learn from?

● Model complexity: what capacity 
does the model have to fit complex 
patterns?

● The latter is classically demonstrated 
with polynomial regression (next slide)
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Bias and Variance
● Bias: the error stemming from model assumptions

● Example: fitting a linear regression to non-linear data

● Intuition: a model's lack of flexibility, leading to under-fitting the data
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Bias and Variance
● Bias: the error stemming from model assumptions

● Example: fitting a linear regression to non-linear data

● Intuition: a model's lack of flexibility, leading to under-fitting the data

● Variance: the error from sensitivity to noise in the training data

● Example: fitting a large neural network to limited data

● Intuition: if we randomly re-sampled the training data, how much would the 
model's outputs change?

● Bias and Variance inherently form a tradeoff - we can't minimize both at once

28
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Regularization
● Many techniques mitigate overfitting by preferring simpler solutions

● L2 Regularization: penalizes large weights

● Based on the "L2 Norm" (Euclidian Distance) of the weight vector

● Strength controlled by hyperparameter : loss += λ λΣθ2
i

● L1 Regularization: penalizes large weights (in a different way)

● Based on "L1 Norm" aka "Manhattan Distance" of the weight vector

● Tends to drive some weights to zero (creating a sparse model)

● loss += λΣ |θi |
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Dropout
● Mostly used in neural networks (or other 

models with many parameters)

● During training (not evaluation), 
randomly set some layer outputs to zero

● Parameterized by the proportion of outputs 
to drop (e.g. 10%, 20%)

● Forces the network to use redundant 
representations

● Put another way, avoids memorizing 
examples with single parameters
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● Early stopping: stop training when the validation loss stops decreasing

● Simple idea, almost always used

● Often will define a patience: i.e. "if my val. loss doesn't decrease for X 
steps..."
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Other Techniques
● Early stopping: stop training when the validation loss stops decreasing

● Simple idea, almost always used

● Often will define a patience: i.e. "if my val. loss doesn't decrease for X 
steps..."

● Model Ensembles: average the results of multiple models

● Reduces variance; also kind of the plot of The Minority Report

● Data Augmentation: more later; idea is to artificially expand the training 
set
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Final point: Cross-Validation
● If your val/test set is very small, won't it 

be a noisy estimate?

● Solution: split into K "folds", use each 
as test in turn

● I.e. train on all the other folds, validate 
on the held-out fold

● Do this K times, then average the result

● Gives a more reliable estimate of 
generalization
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