
Supervised Learning and Generalization
DSCC 251/451: Machine Learning with Limited Data

C.M. Downey
Spring 2026

1

Supervised Learning Review

2

Supervised Learning Basics

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y
● In math terms, learning a function f(x) = y

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y
● In math terms, learning a function f(x) = y

● The function is learned from a dataset of examples

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y
● In math terms, learning a function f(x) = y

● The function is learned from a dataset of examples

● D = {(x1, y1), (x2, y2), . . . (xn, yn)}

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y
● In math terms, learning a function f(x) = y

● The function is learned from a dataset of examples

● D = {(x1, y1), (x2, y2), . . . (xn, yn)}
● The dataset contains pairs of inputs and outputs

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y
● In math terms, learning a function f(x) = y

● The function is learned from a dataset of examples

● D = {(x1, y1), (x2, y2), . . . (xn, yn)}
● The dataset contains pairs of inputs and outputs

● Ex: speed whether you get a speeding ticket→

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y
● In math terms, learning a function f(x) = y

● The function is learned from a dataset of examples

● D = {(x1, y1), (x2, y2), . . . (xn, yn)}
● The dataset contains pairs of inputs and outputs

● Ex: speed whether you get a speeding ticket→
● {(30, False), (33, False), (35, False), (37, True), (39, True)}

3

Supervised Learning Basics
● Overall idea: learn a mapping between inputs and outputs X Y
● In math terms, learning a function f(x) = y

● The function is learned from a dataset of examples

● D = {(x1, y1), (x2, y2), . . . (xn, yn)}
● The dataset contains pairs of inputs and outputs

● Ex: speed whether you get a speeding ticket→
● {(30, False), (33, False), (35, False), (37, True), (39, True)}

● Goal: learn the function that best matches the dataset

3

Learning a Function

4

Learning a Function
● We want to find a function such that...f : X → Y

4

Learning a Function
● We want to find a function such that...f : X → Y
● is "close" to the true for all ̂yi = f(xi) yi (xi, yi) ∈ D

4

Learning a Function
● We want to find a function such that...f : X → Y
● is "close" to the true for all ̂yi = f(xi) yi (xi, yi) ∈ D

● , pronounced "y-hat", is the predicted value of ̂y y

4

Learning a Function
● We want to find a function such that...f : X → Y
● is "close" to the true for all ̂yi = f(xi) yi (xi, yi) ∈ D

● , pronounced "y-hat", is the predicted value of ̂y y

● means "is an element of" or just "in"∈

4

Learning a Function
● We want to find a function such that...f : X → Y
● is "close" to the true for all ̂yi = f(xi) yi (xi, yi) ∈ D

● , pronounced "y-hat", is the predicted value of ̂y y

● means "is an element of" or just "in"∈

● The function also generalizes well to new data (examples not in D)f

4

Learning a Function
● We want to find a function such that...f : X → Y
● is "close" to the true for all ̂yi = f(xi) yi (xi, yi) ∈ D

● , pronounced "y-hat", is the predicted value of ̂y y

● means "is an element of" or just "in"∈

● The function also generalizes well to new data (examples not in D)f

● How do we know what kind of function to learn?

4

Learning a Function
● We want to find a function such that...f : X → Y
● is "close" to the true for all ̂yi = f(xi) yi (xi, yi) ∈ D

● , pronounced "y-hat", is the predicted value of ̂y y

● means "is an element of" or just "in"∈

● The function also generalizes well to new data (examples not in D)f

● How do we know what kind of function to learn?

● Infinitely many to choose from

4

Learning a Function
● We want to find a function such that...f : X → Y
● is "close" to the true for all ̂yi = f(xi) yi (xi, yi) ∈ D

● , pronounced "y-hat", is the predicted value of ̂y y

● means "is an element of" or just "in"∈

● The function also generalizes well to new data (examples not in D)f

● How do we know what kind of function to learn?

● Infinitely many to choose from

● Solution: learn the weights of a parameterized function

4

Parameterized Functions

5

Parameterized Functions
● A learning searches for a function in a space of possible functions

● Parameters define a family of functions that share a common form

● : general symbol for parameters/weights (usually represents several)

● : the function , given parameters

● Example: the family of linear functions

●
● This defines all possible lines (with different slopes and intercepts)

● Later: Neural Networks define their own family of functions

f

θ
̂y = f(x; θ) f(x) θ

f(x) = mx + b
θ = {m, b}

5

Loss Function

6

Loss Function

6

● We need a way to measure how close our parameterized function is to the
"true" input/output mapping

● In other words, we want to measure the error of our model

Loss Function

6

● We need a way to measure how close our parameterized function is to the
"true" input/output mapping

● In other words, we want to measure the error of our model

● "Loss Function": a measure of how much the predicted output diverges from
the true output

●

● Common example: squared error ((Q: why squared?))

̂y
y

ℓ(̂y, y) = ℓ(f(x, θ), y)
ℓ(̂y, y) = (̂y − y)2

Loss Function

6

● We need a way to measure how close our parameterized function is to the
"true" input/output mapping

● In other words, we want to measure the error of our model

● "Loss Function": a measure of how much the predicted output diverges from
the true output

●

● Common example: squared error ((Q: why squared?))

̂y
y

ℓ(̂y, y) = ℓ(f(x, θ), y)
ℓ(̂y, y) = (̂y − y)2

● We always want to minimize the loss/error

● This is a type of optimization problem, which is a huge subfield of math

Loss Minimization

7

Loss Minimization
● Optimization problem: find the values of the parameters that minimize

the loss function
θ

7

Loss Minimization
● Optimization problem: find the values of the parameters that minimize

the loss function
θ

● We will view loss as a function of the parameters: ℓ(θ) := ℓ(f(x, θ), y)

7

Loss Minimization
● Optimization problem: find the values of the parameters that minimize

the loss function
θ

● We will view loss as a function of the parameters: ℓ(θ) := ℓ(f(x, θ), y)

● In math terms, are the optimal parametersθ*

7

θ* = arg min
θ

ℓ(θ)

Loss Minimization
● Optimization problem: find the values of the parameters that minimize

the loss function
θ

● We will view loss as a function of the parameters: ℓ(θ) := ℓ(f(x, θ), y)

● In math terms, are the optimal parametersθ*

● Example: Linear Regression ("Least-Squares" method)

7

θ* = arg min
θ

ℓ(θ)

m*, b* = arg min
m,b ∑

i

((mxi + b) − yi)2

Guessing a number

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

● You give me any input number (we'll call it)x

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

● You give me any input number (we'll call it)x

● I'll add a secret number to it (call it)θ

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

● You give me any input number (we'll call it)x

● I'll add a secret number to it (call it)θ

● I'll tell you the output number ()y

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

● You give me any input number (we'll call it)x

● I'll add a secret number to it (call it)θ

● I'll tell you the output number ()y
● You have to deduce the value of the secret number

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

● You give me any input number (we'll call it)x

● I'll add a secret number to it (call it)θ

● I'll tell you the output number ()y
● You have to deduce the value of the secret number

● What is the equation for the function that we're applying?

8

Guessing a number
● We'll illustrate Gradient Descent with a (very) simple number game

● (Trivially easy for humans, we don't actually need Gradient Descent to solve it)

● Idea:

● You give me any input number (we'll call it)x

● I'll add a secret number to it (call it)θ

● I'll tell you the output number ()y
● You have to deduce the value of the secret number

● What is the equation for the function that we're applying?

● ̂y = f(x) = x + θ

8

Process

9

Process
● Here are some input-output pairs that define our dataset:

● {(2, 4), (3, 5), (5, 7), (8, 10)}

9

Process
● Here are some input-output pairs that define our dataset:

● {(2, 4), (3, 5), (5, 7), (8, 10)}

● You can see that , but how would we learn this algorithmically?θ = 2

9

Process
● Here are some input-output pairs that define our dataset:

● {(2, 4), (3, 5), (5, 7), (8, 10)}

● You can see that , but how would we learn this algorithmically?θ = 2

● First define a parameterized function

● Model prediction:

f(x, θ)
̂y = f(x, θ) = x + θ

9

Process
● Here are some input-output pairs that define our dataset:

● {(2, 4), (3, 5), (5, 7), (8, 10)}

● You can see that , but how would we learn this algorithmically?θ = 2

● First define a parameterized function

● Model prediction:

f(x, θ)
̂y = f(x, θ) = x + θ

● Then define a loss/error function

● We'll use Squared Error: ℓ(̂y, y) = (̂y − y)2 = (f(x, θ) − y)2

9

Process
● Here are some input-output pairs that define our dataset:

● {(2, 4), (3, 5), (5, 7), (8, 10)}

● You can see that , but how would we learn this algorithmically?θ = 2

● First define a parameterized function

● Model prediction:

f(x, θ)
̂y = f(x, θ) = x + θ

● Then define a loss/error function

● We'll use Squared Error: ℓ(̂y, y) = (̂y − y)2 = (f(x, θ) − y)2

● Lastly learn the optimal value of (i.e. the value that minimizes the loss)θ

9

Loss function

10

Loss function
● We cast loss as a function of the

parameter(s) θ

10

Loss function
● We cast loss as a function of the

parameter(s) θ
● ℓ(f(x, θ), y) = (f(x, θ) − y)2 = (x + θ − y)2

10

Loss function
● We cast loss as a function of the

parameter(s) θ
● ℓ(f(x, θ), y) = (f(x, θ) − y)2 = (x + θ − y)2

● are treated as constants
provided by the data
x, y

10

Loss function
● We cast loss as a function of the

parameter(s) θ
● ℓ(f(x, θ), y) = (f(x, θ) − y)2 = (x + θ − y)2

● are treated as constants
provided by the data
x, y

● Plug in the datapoint (x = 2, y = 4)

10

Loss function
● We cast loss as a function of the

parameter(s) θ
● ℓ(f(x, θ), y) = (f(x, θ) − y)2 = (x + θ − y)2

● are treated as constants
provided by the data
x, y

● Plug in the datapoint (x = 2, y = 4)
● ℓ(f(x, θ), y) = (x + θ − y)2 = (2 + θ − 4)2 = (θ − 2)2

10

Loss function
● We cast loss as a function of the

parameter(s) θ
● ℓ(f(x, θ), y) = (f(x, θ) − y)2 = (x + θ − y)2

● are treated as constants
provided by the data
x, y

● Plug in the datapoint (x = 2, y = 4)
● ℓ(f(x, θ), y) = (x + θ − y)2 = (2 + θ − 4)2 = (θ − 2)2

● We can plot this loss curve!

10

Loss function
● We cast loss as a function of the

parameter(s) θ
● ℓ(f(x, θ), y) = (f(x, θ) − y)2 = (x + θ − y)2

● are treated as constants
provided by the data
x, y

● Plug in the datapoint (x = 2, y = 4)
● ℓ(f(x, θ), y) = (x + θ − y)2 = (2 + θ − 4)2 = (θ − 2)2

● We can plot this loss curve!

10

Loss function

11

Loss function
● This curve shows the properties we

expect

● Loss is minimized where

● Loss grows large the farther is from
the true value

θ = 2
θ

11

Loss function
● This curve shows the properties we

expect

● Loss is minimized where

● Loss grows large the farther is from
the true value

θ = 2
θ

● Gradient Descent idea: minimize loss
by following the slope (i.e.
"gradient") of the loss function

●
d
dθ

(θ − 2)2 = 2θ − 4

11

Loss function
● This curve shows the properties we

expect

● Loss is minimized where

● Loss grows large the farther is from
the true value

θ = 2
θ

● Gradient Descent idea: minimize loss
by following the slope (i.e.
"gradient") of the loss function

●
d
dθ

(θ − 2)2 = 2θ − 4

11

Loss function

12

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Loss function
● NOTE: for this example, every datapoint

gives us the exact same loss curve

●

●

●
● ...etc.

(θ − 2)2 = (2 + θ − 4)2

= (3 + θ − 5)2

= (5 + θ − 7)2

12

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Loss function
● NOTE: for this example, every datapoint

gives us the exact same loss curve

●

●

●
● ...etc.

(θ − 2)2 = (2 + θ − 4)2

= (3 + θ − 5)2

= (5 + θ − 7)2

● This is NOT always the case
● Will show an example later on

12

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Loss function
● NOTE: for this example, every datapoint

gives us the exact same loss curve

●

●

●
● ...etc.

(θ − 2)2 = (2 + θ − 4)2

= (3 + θ − 5)2

= (5 + θ − 7)2

● This is NOT always the case
● Will show an example later on

● For this example ONLY, solving for one
datapoint solves the whole problem

12

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)

13

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Gradient Descent is an iterative

algorithm

● I.e. you repeatedly adjust until the
loss is minimized

θ

13

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Gradient Descent is an iterative

algorithm

● I.e. you repeatedly adjust until the
loss is minimized

θ

● The initial value of is a design
choice

● Sometimes randomly initialized

● Sometimes set to zero

● We'll start with

θ

θ = 5

13

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Gradient Descent is an iterative

algorithm

● I.e. you repeatedly adjust until the
loss is minimized

θ

● The initial value of is a design
choice

● Sometimes randomly initialized

● Sometimes set to zero

● We'll start with

θ

θ = 5

13

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

● Adjust by the negative of the slope
(because we want to minimize the
function)

θ

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

● Adjust by the negative of the slope
(because we want to minimize the
function)

θ

● First step:

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

● Adjust by the negative of the slope
(because we want to minimize the
function)

θ

● First step:

● Plug in to derivative:θ

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

● Adjust by the negative of the slope
(because we want to minimize the
function)

θ

● First step:

● Plug in to derivative:θ

● 2 ⋅ 5 − 4 = 6

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

● Adjust by the negative of the slope
(because we want to minimize the
function)

θ

● First step:

● Plug in to derivative:θ

● 2 ⋅ 5 − 4 = 6

● Update :θ

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

● Adjust by the negative of the slope
(because we want to minimize the
function)

θ

● First step:

● Plug in to derivative:θ

● 2 ⋅ 5 − 4 = 6

● Update :θ

● θ1 = θ0 − 6 = − 1

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● At each step of the algorithm:

● Calculate the slope at the current point

● Adjust by the negative of the slope
(because we want to minimize the
function)

θ

● First step:

● Plug in to derivative:θ

● 2 ⋅ 5 − 4 = 6

● Update :θ

● θ1 = θ0 − 6 = − 1

14

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

● Plug in new :θ1

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

● Plug in new :θ1

● 2 ⋅ (−1) − 4 = − 6

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

● Plug in new :θ1

● 2 ⋅ (−1) − 4 = − 6

● Update :θ

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

● Plug in new :θ1

● 2 ⋅ (−1) − 4 = − 6

● Update :θ

● θ2 = θ1 − (−6) = 5

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

● Plug in new :θ1

● 2 ⋅ (−1) − 4 = − 6

● Update :θ

● θ2 = θ1 − (−6) = 5

● Whoops! We're back where we
started!

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

● Plug in new :θ1

● 2 ⋅ (−1) − 4 = − 6

● Update :θ

● θ2 = θ1 − (−6) = 5

● Whoops! We're back where we
started!

● This process would "bounce back and
forth" forever!

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (first try)
● Second step:

● Plug in new :θ1

● 2 ⋅ (−1) − 4 = − 6

● Update :θ

● θ2 = θ1 − (−6) = 5

● Whoops! We're back where we
started!

● This process would "bounce back and
forth" forever!

15

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● What if we adjusted by a fraction

of the slope? (Say, 0.75)
θ

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● What if we adjusted by a fraction

of the slope? (Say, 0.75)
θ

● Let's start again:

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● What if we adjusted by a fraction

of the slope? (Say, 0.75)
θ

● Let's start again:

● Plug in to derivative:θ0

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● What if we adjusted by a fraction

of the slope? (Say, 0.75)
θ

● Let's start again:

● Plug in to derivative:θ0

● 2 ⋅ 5 − 4 = 6

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● What if we adjusted by a fraction

of the slope? (Say, 0.75)
θ

● Let's start again:

● Plug in to derivative:θ0

● 2 ⋅ 5 − 4 = 6

● Update :θ

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● What if we adjusted by a fraction

of the slope? (Say, 0.75)
θ

● Let's start again:

● Plug in to derivative:θ0

● 2 ⋅ 5 − 4 = 6

● Update :θ

● θ1 = θ0 − 0.75 ⋅ 6 = 0.5

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● What if we adjusted by a fraction

of the slope? (Say, 0.75)
θ

● Let's start again:

● Plug in to derivative:θ0

● 2 ⋅ 5 − 4 = 6

● Update :θ

● θ1 = θ0 − 0.75 ⋅ 6 = 0.5

16

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Second step:

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Second step:

● Plug in to derivative:θ1

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Second step:

● Plug in to derivative:θ1

● 2 ⋅ 0.5 − 4 = − 3

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Second step:

● Plug in to derivative:θ1

● 2 ⋅ 0.5 − 4 = − 3

● Update :θ

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Second step:

● Plug in to derivative:θ1

● 2 ⋅ 0.5 − 4 = − 3

● Update :θ

● θ2 = θ1 − 0.75 ⋅ (−3) = 2.25

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Second step:

● Plug in to derivative:θ1

● 2 ⋅ 0.5 − 4 = − 3

● Update :θ

● θ2 = θ1 − 0.75 ⋅ (−3) = 2.25

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Second step:

● Plug in to derivative:θ1

● 2 ⋅ 0.5 − 4 = − 3

● Update :θ

● θ2 = θ1 − 0.75 ⋅ (−3) = 2.25

● (This is looking better)

17

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)

18

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Third step:

● Plug in to derivative:

●
● Update :

●

θ2

2 ⋅ 2.25 − 4 = 0.5
θ

θ3 = θ2 − 0.75 ⋅ 0.5 = 1.875

18

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Third step:

● Plug in to derivative:

●
● Update :

●

θ2

2 ⋅ 2.25 − 4 = 0.5
θ

θ3 = θ2 − 0.75 ⋅ 0.5 = 1.875

18

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Third step:

● Plug in to derivative:

●
● Update :

●

θ2

2 ⋅ 2.25 − 4 = 0.5
θ

θ3 = θ2 − 0.75 ⋅ 0.5 = 1.875

● Loss gets lower with every step!

18

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Gradient Descent (second try)
● Third step:

● Plug in to derivative:

●
● Update :

●

θ2

2 ⋅ 2.25 − 4 = 0.5
θ

θ3 = θ2 − 0.75 ⋅ 0.5 = 1.875

● Loss gets lower with every step!

● gets arbitrarily close to the
optimal value with more steps
θ

18

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Learning Rate

19

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Learning Rate
● The fraction by which we multiplied our

adjustment is called the Learning Rate

19

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Learning Rate
● The fraction by which we multiplied our

adjustment is called the Learning Rate

● In practice, LR is chosen by trial and
error (called "tuning")

19

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Learning Rate
● The fraction by which we multiplied our

adjustment is called the Learning Rate

● In practice, LR is chosen by trial and
error (called "tuning")

● Risks of different values

● Too high "bouncing around" and
missing an optimum

● Too low taking many steps to reach
the optimum

→

→

19

ℓ(̂y, y) = (θ − 2)2

ℓ′￼(̂y, y) = 2θ − 4

Supervised Paradigms

20

Supervised Paradigms
● Classification: model outputs discrete categories

● E.g. binary classification: spam/not-spam, human/bot, true/false

● Multi-class: dog/cat/other, choosing word from finite vocabulary

● Almost always outputs a probability distribution

● Often achieved with the sigmoid or softmax function

20

Supervised Paradigms
● Classification: model outputs discrete categories

● E.g. binary classification: spam/not-spam, human/bot, true/false

● Multi-class: dog/cat/other, choosing word from finite vocabulary

● Almost always outputs a probability distribution

● Often achieved with the sigmoid or softmax function

● Regression: model outputs a continuous number

● E.g. predicting the price of a house, sales numbers

20

Model Families (non-exhaustive)

21

Model Families (non-exhaustive)
● Linear: output decided from linear combination of input features

● Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM

● Feature weights tend to be fairly interpretable

● Strong baseline to try out with limited data!

21

Model Families (non-exhaustive)
● Linear: output decided from linear combination of input features

● Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM

● Feature weights tend to be fairly interpretable

● Strong baseline to try out with limited data!

● Tree-based: branching decision processes based on input features

● Examples: Decision Tree, Random Forest

● Single trees tend to overfit to small data (Random Forest helps)

21

Model Families (non-exhaustive)
● Linear: output decided from linear combination of input features

● Examples: Linear/Logistic Regression, Naive Bayes, Linear SVM

● Feature weights tend to be fairly interpretable

● Strong baseline to try out with limited data!

● Tree-based: branching decision processes based on input features

● Examples: Decision Tree, Random Forest

● Single trees tend to overfit to small data (Random Forest helps)

● Neural Networks: hierarchical non-linear transformations of input features

● Examples: Feedforward, CNNs, RNNs, Transformers, etc.

● Quickly overfit to limited data (without regularization + other tricks)

21

Model Generalization

22

ML Dataset Splits

23

ML Dataset Splits
● Reminder: we usually split our dataset into multiple subsets

23

ML Dataset Splits
● Reminder: we usually split our dataset into multiple subsets

● Training: the data that the model actually uses to learn / optimize for

23

ML Dataset Splits
● Reminder: we usually split our dataset into multiple subsets

● Training: the data that the model actually uses to learn / optimize for

● Test: data that is held-out until the model is fully trained

● Tests generalization to completely unseen data

● Important not to touch until the end!

23

ML Dataset Splits
● Reminder: we usually split our dataset into multiple subsets

● Training: the data that the model actually uses to learn / optimize for

● Test: data that is held-out until the model is fully trained

● Tests generalization to completely unseen data

● Important not to touch until the end!

● "Development"/"Validation": used during training to tune generalization

● Also held-out (not actually seen by model during training)

● Used to help tune hyperparameters and detect overfitting

23

ML Dataset Splits
● Reminder: we usually split our dataset into multiple subsets

● Training: the data that the model actually uses to learn / optimize for

● Test: data that is held-out until the model is fully trained

● Tests generalization to completely unseen data

● Important not to touch until the end!

● "Development"/"Validation": used during training to tune generalization

● Also held-out (not actually seen by model during training)

● Used to help tune hyperparameters and detect overfitting

● What is overfitting?

23

24

25

Why does overfitting happen?

26

Why does overfitting happen?
● Model overfitting depends on two

key factors:

● Data size: how much data is there to
learn from?

● Model complexity: what capacity
does the model have to fit complex
patterns?

26

Why does overfitting happen?
● Model overfitting depends on two

key factors:

● Data size: how much data is there to
learn from?

● Model complexity: what capacity
does the model have to fit complex
patterns?

● The latter is classically demonstrated
with polynomial regression (next slide)

26

27

Bias and Variance

28

Bias and Variance
● Bias: the error stemming from model assumptions

● Example: fitting a linear regression to non-linear data

● Intuition: a model's lack of flexibility, leading to under-fitting the data

28

Bias and Variance
● Bias: the error stemming from model assumptions

● Example: fitting a linear regression to non-linear data

● Intuition: a model's lack of flexibility, leading to under-fitting the data

● Variance: the error from sensitivity to noise in the training data

● Example: fitting a large neural network to limited data

● Intuition: if we randomly re-sampled the training data, how much would the
model's outputs change?

28

Bias and Variance
● Bias: the error stemming from model assumptions

● Example: fitting a linear regression to non-linear data

● Intuition: a model's lack of flexibility, leading to under-fitting the data

● Variance: the error from sensitivity to noise in the training data

● Example: fitting a large neural network to limited data

● Intuition: if we randomly re-sampled the training data, how much would the
model's outputs change?

● Bias and Variance inherently form a tradeoff - we can't minimize both at once

28

Bias and Variance

29

Bias and Variance

29

high bias
low variance

Bias and Variance

29

high bias
low variance

high bias
high variance

Bias and Variance

29

high bias
low variance

high bias
high variance

low bias
low variance

Bias and Variance

29

high bias
low variance

high bias
high variance

low bias
low variance

low bias
high variance

30

Mitigating Overfitting

31

Regularization

32

Regularization
● Many techniques mitigate overfitting by preferring simpler solutions

32

Regularization
● Many techniques mitigate overfitting by preferring simpler solutions

● L2 Regularization: penalizes large weights

● Based on the "L2 Norm" (Euclidian Distance) of the weight vector

● Strength controlled by hyperparameter : loss += λ λΣθ2
i

32

Regularization
● Many techniques mitigate overfitting by preferring simpler solutions

● L2 Regularization: penalizes large weights

● Based on the "L2 Norm" (Euclidian Distance) of the weight vector

● Strength controlled by hyperparameter : loss += λ λΣθ2
i

● L1 Regularization: penalizes large weights (in a different way)

● Based on "L1 Norm" aka "Manhattan Distance" of the weight vector

● Tends to drive some weights to zero (creating a sparse model)

● loss += λΣ |θi |

32

L1 and L2 Visualized

33

L1 and L2 Visualized

33

L1 and L2 Visualized

33

manhattan

euclidean

a⃗

b⃗

L1 L2

Dropout

34

Dropout
● Mostly used in neural networks (or other

models with many parameters)

34

Dropout
● Mostly used in neural networks (or other

models with many parameters)

● During training (not evaluation),
randomly set some layer outputs to zero

● Parameterized by the proportion of outputs
to drop (e.g. 10%, 20%)

34

Dropout
● Mostly used in neural networks (or other

models with many parameters)

● During training (not evaluation),
randomly set some layer outputs to zero

● Parameterized by the proportion of outputs
to drop (e.g. 10%, 20%)

● Forces the network to use redundant
representations

● Put another way, avoids memorizing
examples with single parameters

34

Other Techniques

35

Other Techniques
● Early stopping: stop training when the validation loss stops decreasing

● Simple idea, almost always used

● Often will define a patience: i.e. "if my val. loss doesn't decrease for X
steps..."

35

Other Techniques
● Early stopping: stop training when the validation loss stops decreasing

● Simple idea, almost always used

● Often will define a patience: i.e. "if my val. loss doesn't decrease for X
steps..."

● Model Ensembles: average the results of multiple models

● Reduces variance; also kind of the plot of The Minority Report

35

Other Techniques
● Early stopping: stop training when the validation loss stops decreasing

● Simple idea, almost always used

● Often will define a patience: i.e. "if my val. loss doesn't decrease for X
steps..."

● Model Ensembles: average the results of multiple models

● Reduces variance; also kind of the plot of The Minority Report

● Data Augmentation: more later; idea is to artificially expand the training
set

35

Final point: Cross-Validation

36

Final point: Cross-Validation
● If your val/test set is very small, won't it

be a noisy estimate?

36

Final point: Cross-Validation
● If your val/test set is very small, won't it

be a noisy estimate?

● Solution: split into K "folds", use each
as test in turn

● I.e. train on all the other folds, validate
on the held-out fold

● Do this K times, then average the result

36

Final point: Cross-Validation
● If your val/test set is very small, won't it

be a noisy estimate?

● Solution: split into K "folds", use each
as test in turn

● I.e. train on all the other folds, validate
on the held-out fold

● Do this K times, then average the result

● Gives a more reliable estimate of
generalization

36

37

