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Bias/Variance Decomposition
● We have the intuition of why Bias 

and Variance are in a tradeoff

● What can we say mathematically?

● We are able to decompose the 
definition of model error:

●  (model error)

● = 

● Here's how

𝔼[(y − ̂f(x))2]
Bias2 + Variance + noise
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Starting the Derivation
● Start with a fixed test datapoint . The true relationship we want to 

model is 
x

y = f*(x) + ϵ
● : the actual/desired outputy

● : the perfect model (the function we're trying to learn)f*(x)

● : noise (intrinsic randomness we always consider part of the data)ϵ

● We'll assume our training set is random

● What is the expected error for the model, across all possible training sets?

●  (this is what we will decompose)𝔼[(y − ̂f(x))2]
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Decomposition
● Start with  (previous slide)𝔼[(y − ̂f(x))2]

● Substitute y = f*(x) + ϵ

● 𝔼[( f*(x) + ϵ − ̂f(x))2]

● Add and subtract  (trick)𝔼[ ̂f(x)]

●
𝔼 (f*(x) − 𝔼[ ̂f(x)]

bias (constant)

+ 𝔼[ ̂f(x)] − ̂f(x)

variance (random)

+ ϵ
⏟

noise (random)
)2
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Decomposition
● Finally, with some algebra we get the equation seen below

● Model error is decomposable into Bias2 + Variance + Noise

● This is why there will always be a tradeoff!

● Bias: the difference between the model and the true (ideal) function

● Variance: the difference between the model and its own mean

● Noise: intrinsic randomness in the data
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𝔼[(y − ̂f(x))2] = ( f*(x) − 𝔼[ ̂f(x)])2

Bias2

+ 𝔼[( ̂f(x) − 𝔼[ ̂f(x)])2]

Variance

+ σ2
⏟

Irreducible
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14



Bayes' Rule
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Bayes' Rule
● Bayesian statistics works with 

Conditional Probabilities

● : what is the probability of 
A given B?
P(A |B)

● Bayes' Rule: an alternative definition 
useful for statistical inference

● What is the probability of some 
hypothesis, given observed 
data?

15

P(A |B) :=
P(A ∩ B)

P(B)

P(A |B) =
P(B |A)P(A)

P(B)

Def. of Conditional Probability
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Bayes' Rule Decomposition
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P(H |D) =
P(D |H)P(H)

P(D)

"Posterior"
What we want 

to know

"Likelihood"
How likely is the 
data under each 

hypothesis?

"Prior"
What is our 
prior belief 
about H?

What is the probability 
of a hypothesis given 

our data?
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Bayesian Thinking
● Key point: we do NOT have to use 

Bayesian models in order to 
engage in Bayesian thinking!

● Bayesian Machine Learning exists! 
But the insights apply to other 
models too
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Bayesian Thinking
● Key point: we do NOT have to use 

Bayesian models in order to 
engage in Bayesian thinking!

● Bayesian Machine Learning exists! 
But the insights apply to other 
models too

● Example: parameter regularization 
is essentially applying a prior 
probability on small weights!
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Reminder: Norm Regularization
● L2 Regularization: penalizes large 

weights

● Strength controlled by 
hyperparameter : loss += λ λΣθ2

i

● L1 Regularization: penalizes large 
weights (in a different way)

● Tends to drive some weights to 
zero (creating a sparse model)

● loss += λΣ |θi |
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