

Inductive Bias

DSCC 251/451: Machine Learning with Limited Data

C.M. Downey

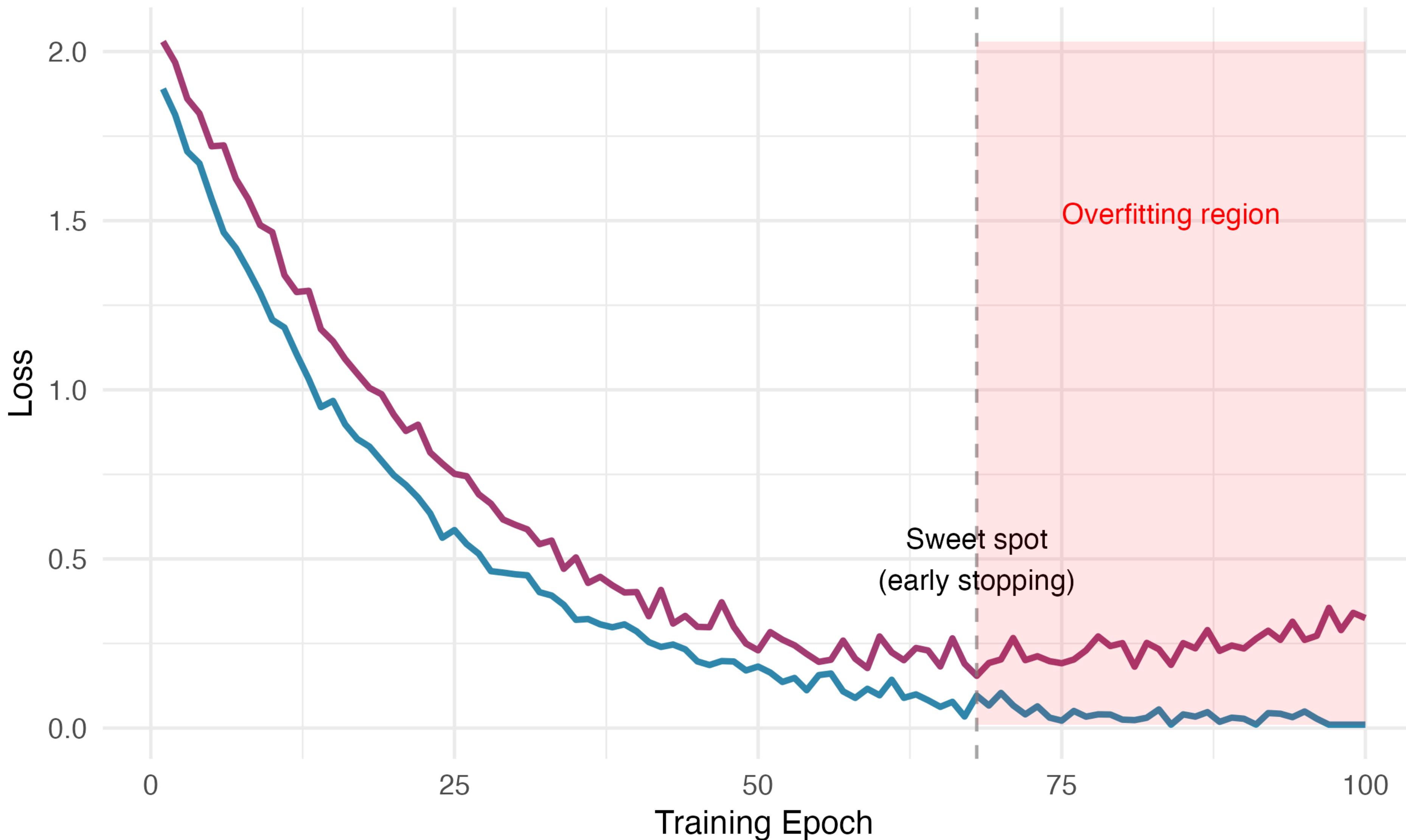
Spring 2026

Bias vs. Variance Recap

What Overfitting Looks Like

Training loss keeps improving, but validation loss increases

— Training — Validation



The Generalization Gap Depends on Data Size

This is the fundamental picture of the course

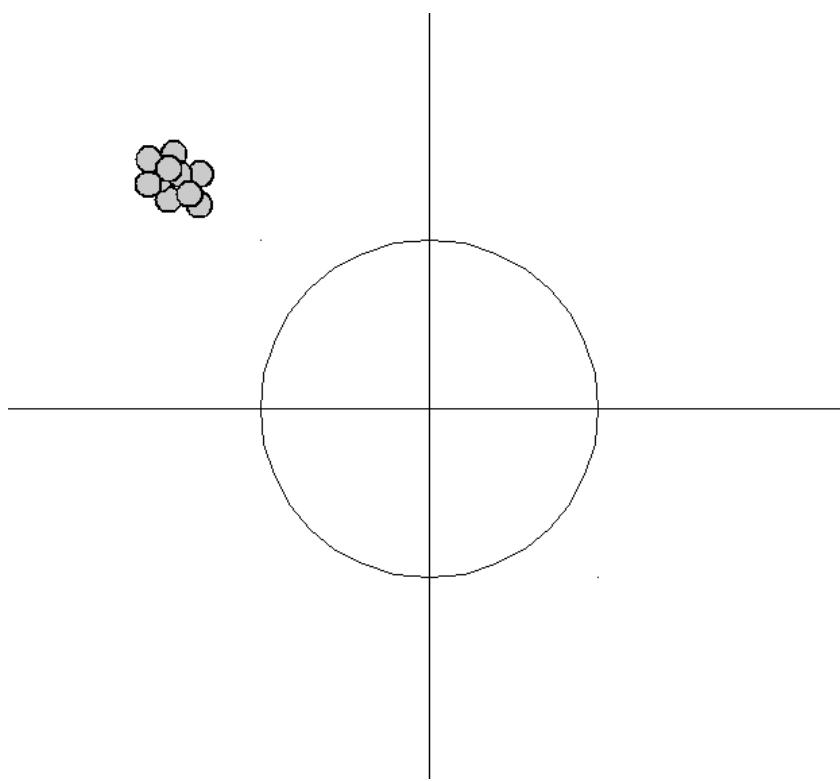
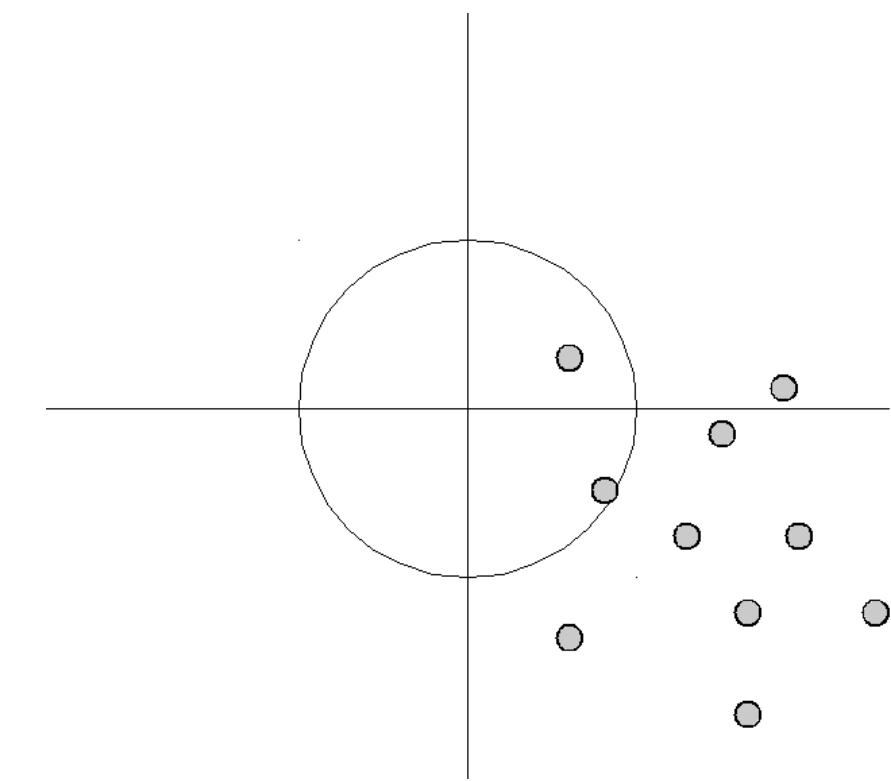
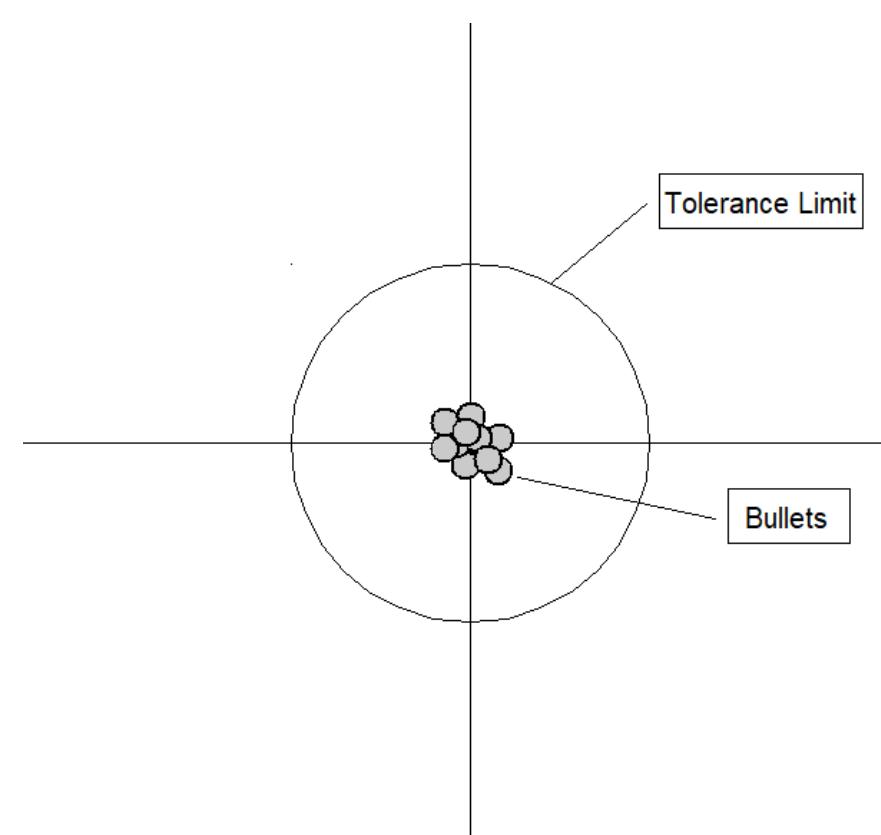
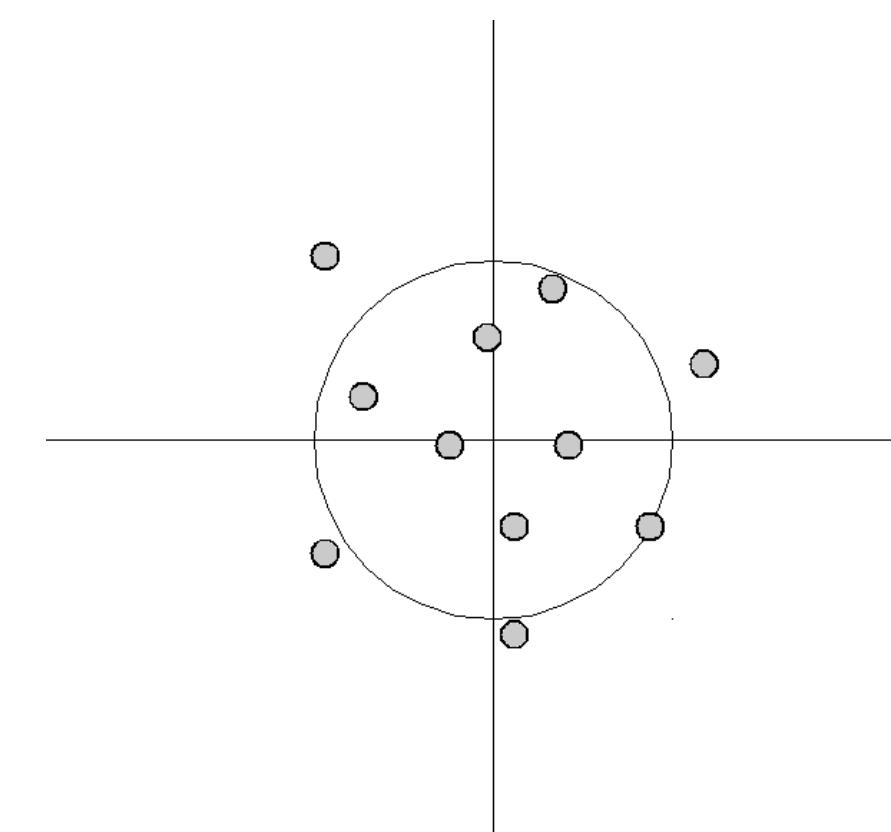


Model Complexity vs. Overfitting

Blue = training data, Orange = test data, Dashed = true function

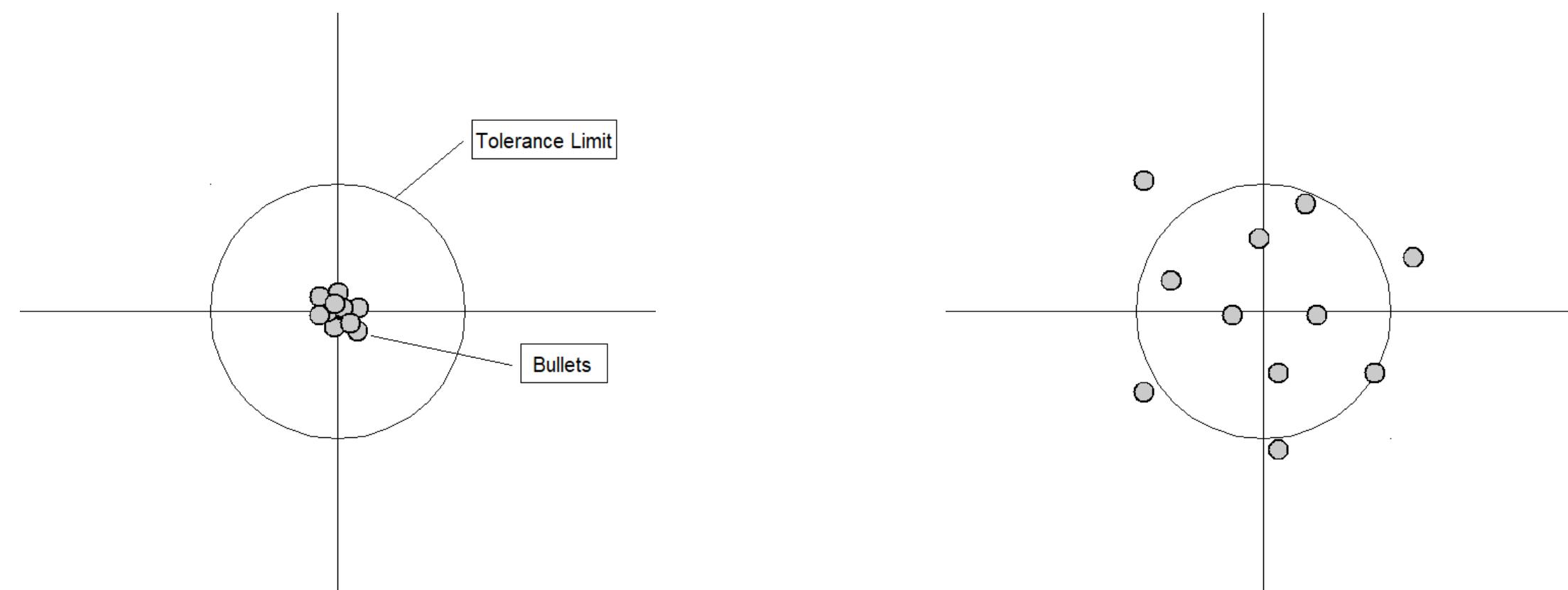


Bias and Variance



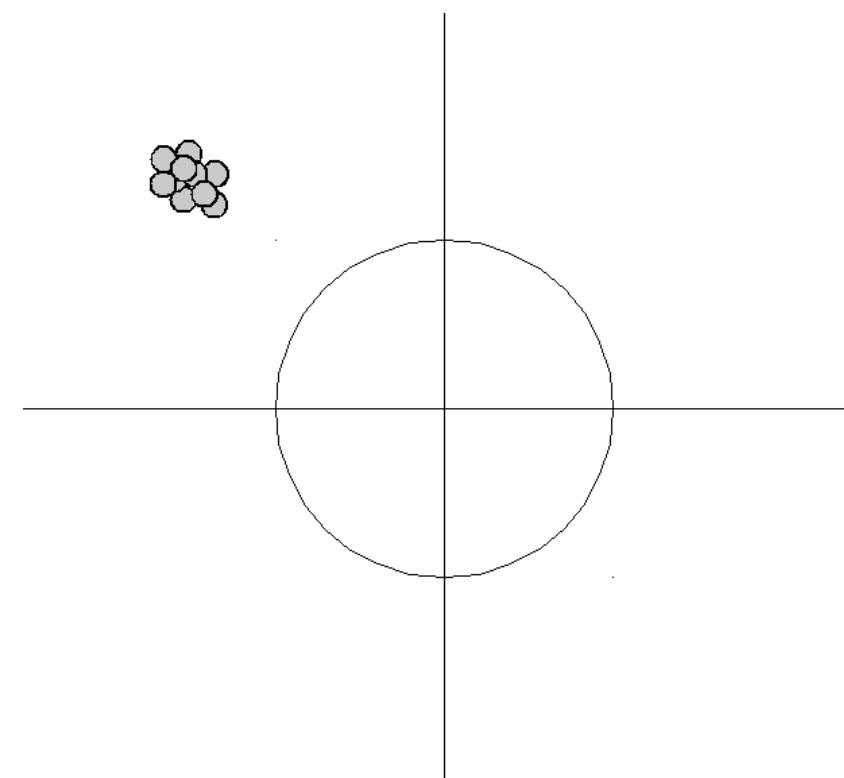
Bias and Variance

high bias
low variance

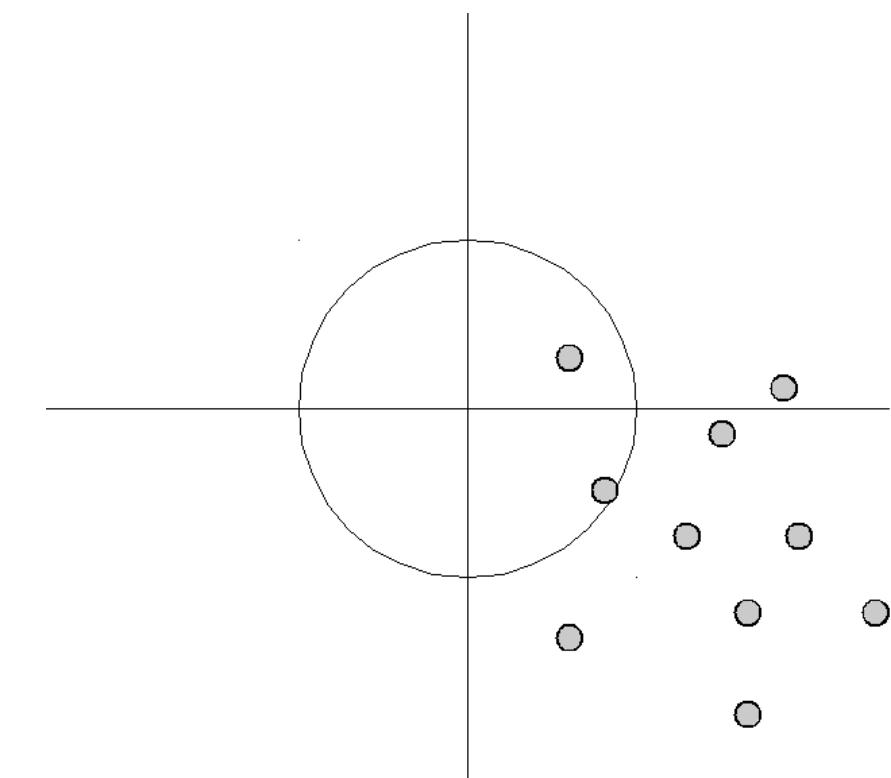
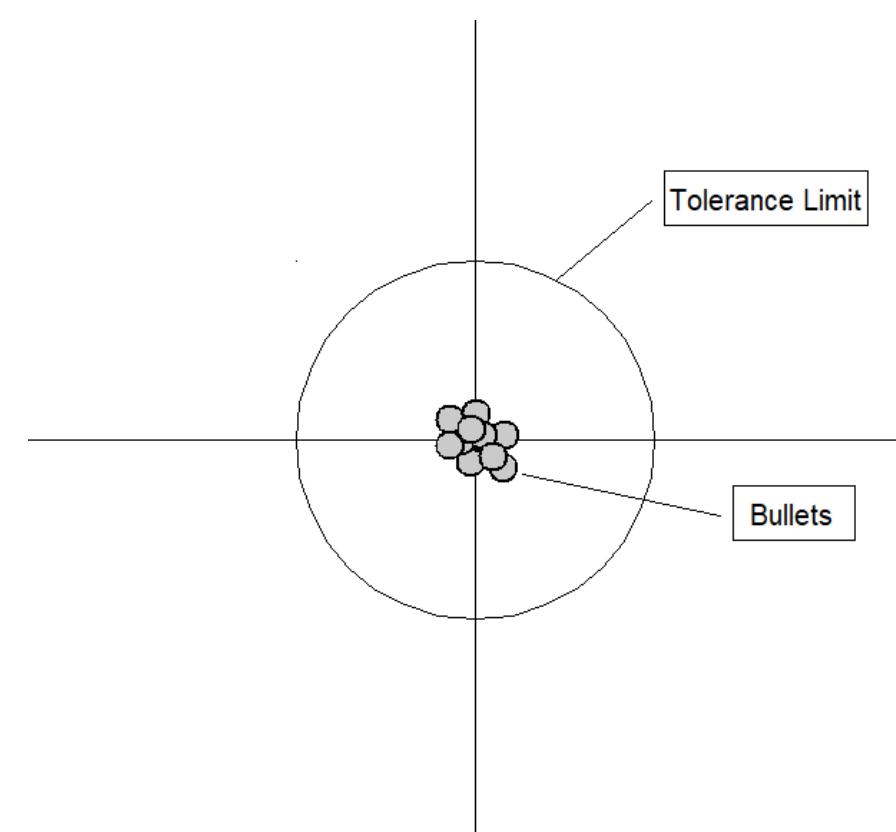
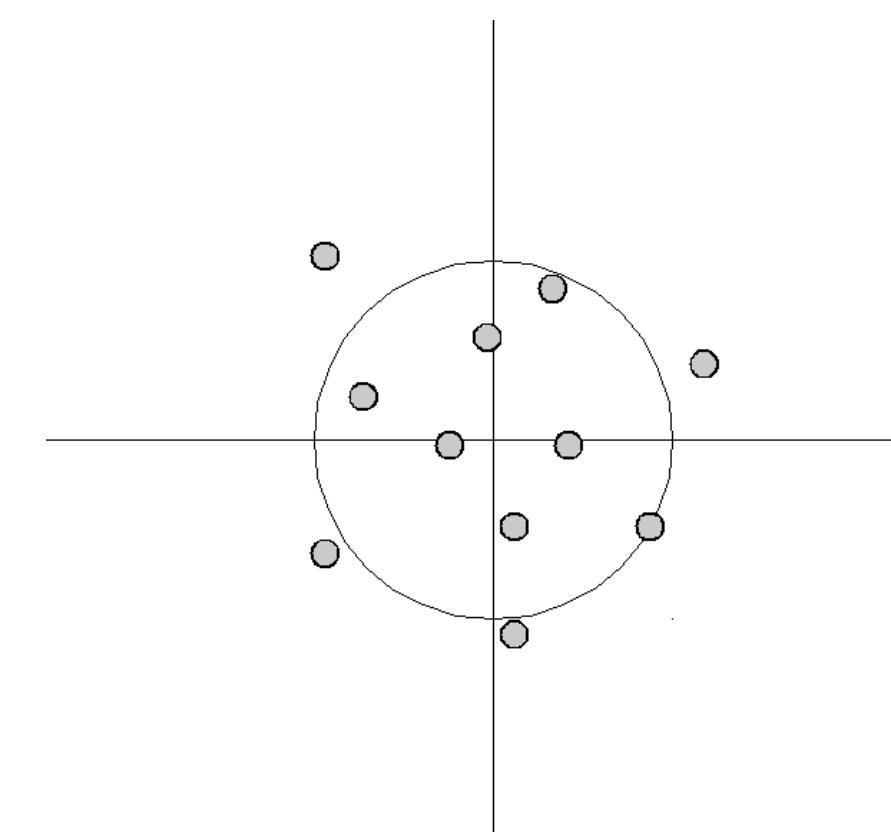


Bias and Variance

high bias
low variance

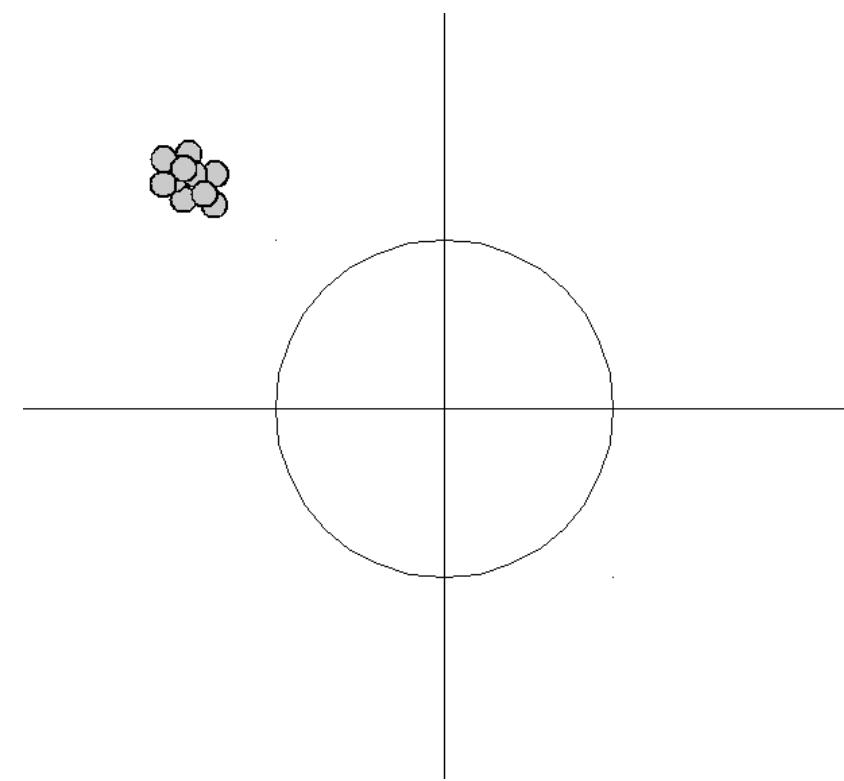


high bias
high variance

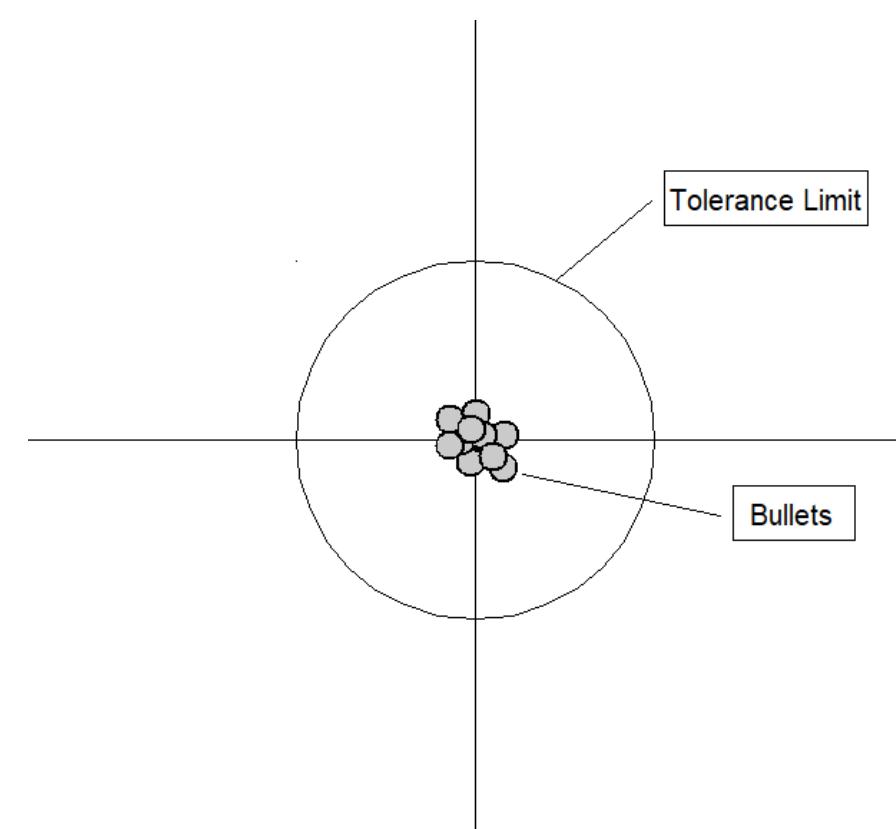


Bias and Variance

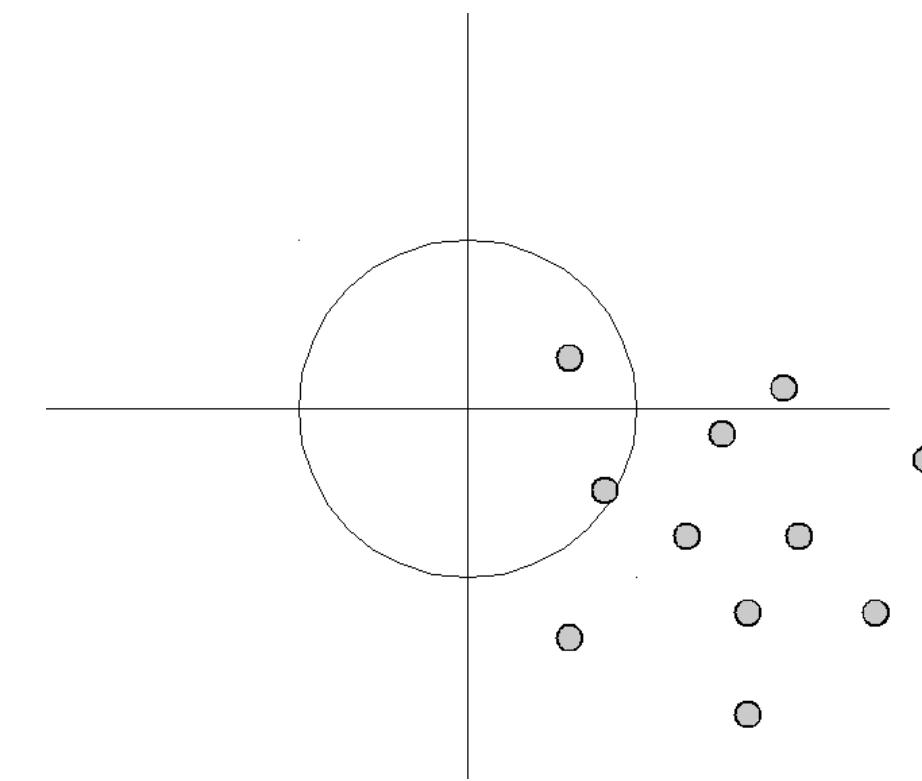
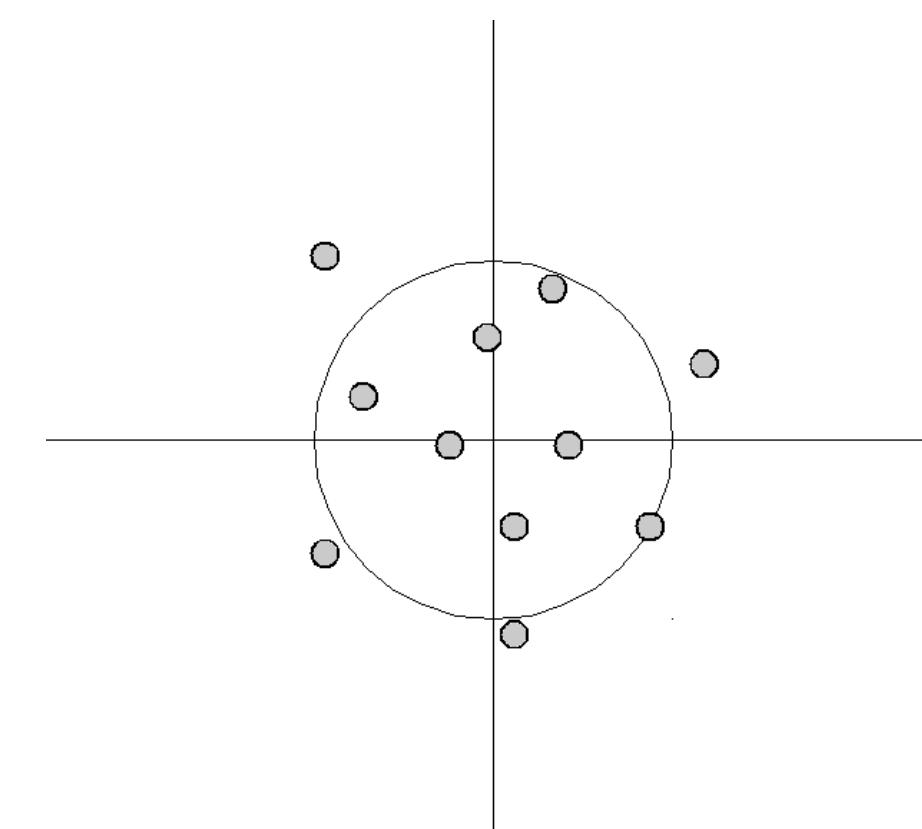
high bias
low variance



low bias
low variance

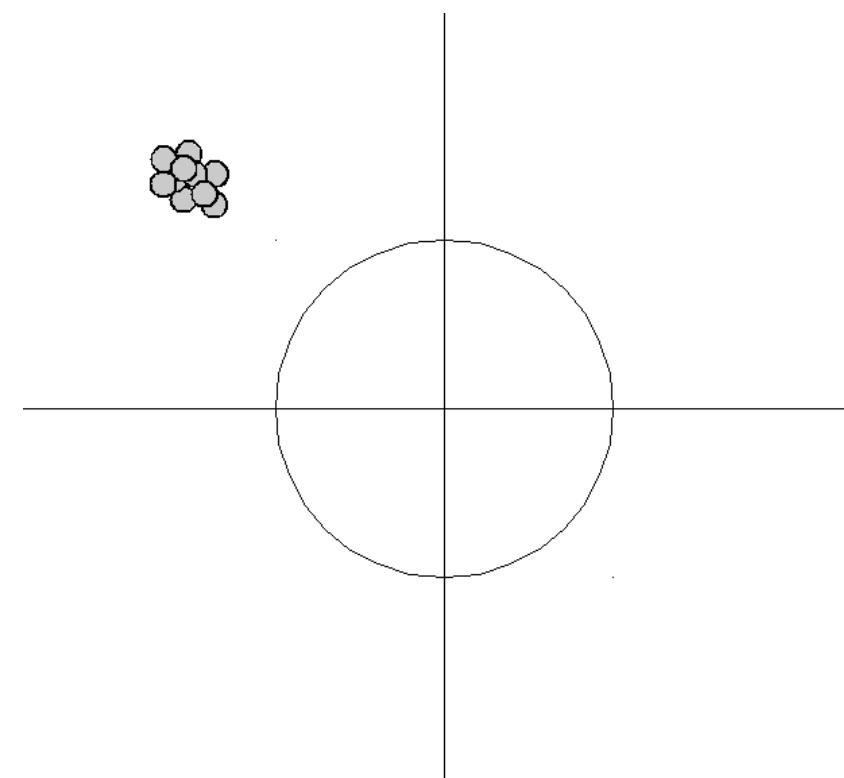


high bias
high variance

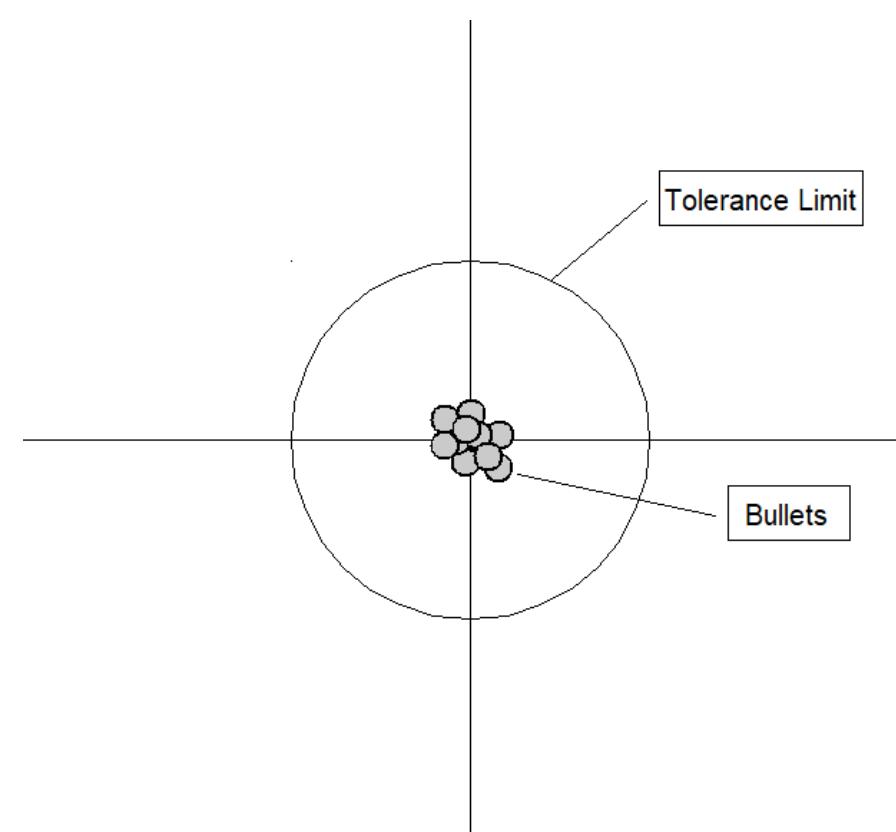


Bias and Variance

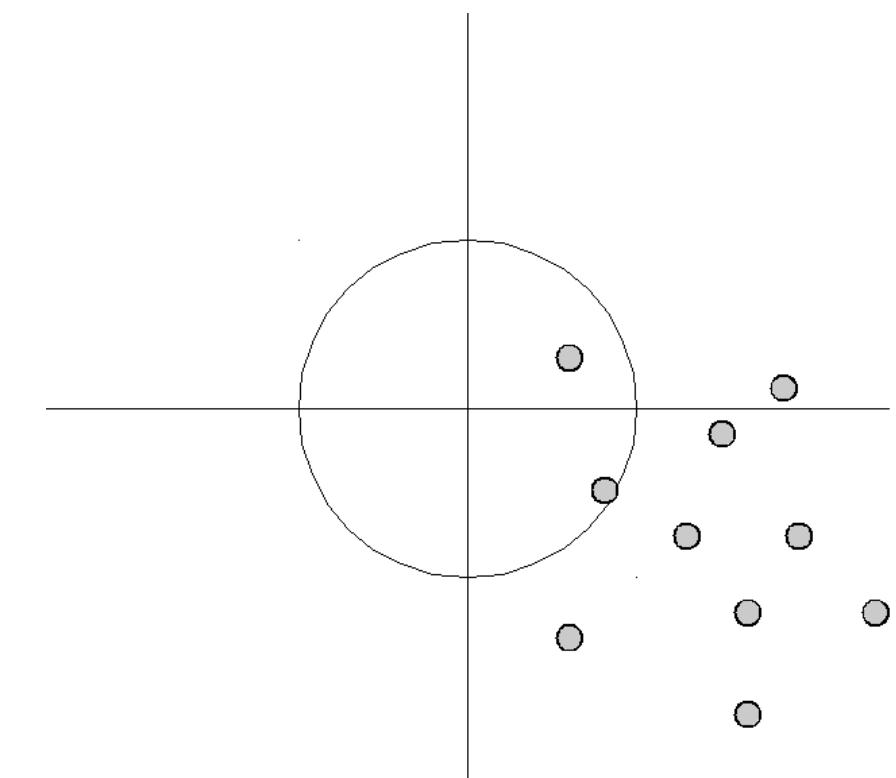
high bias
low variance



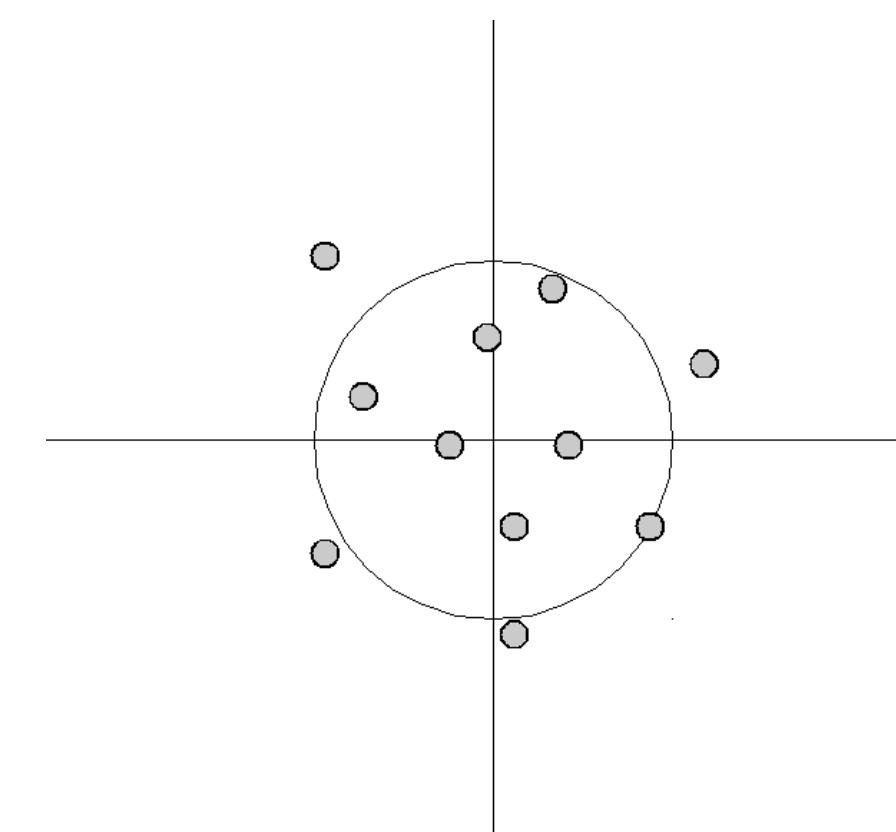
low bias
low variance



high bias
high variance

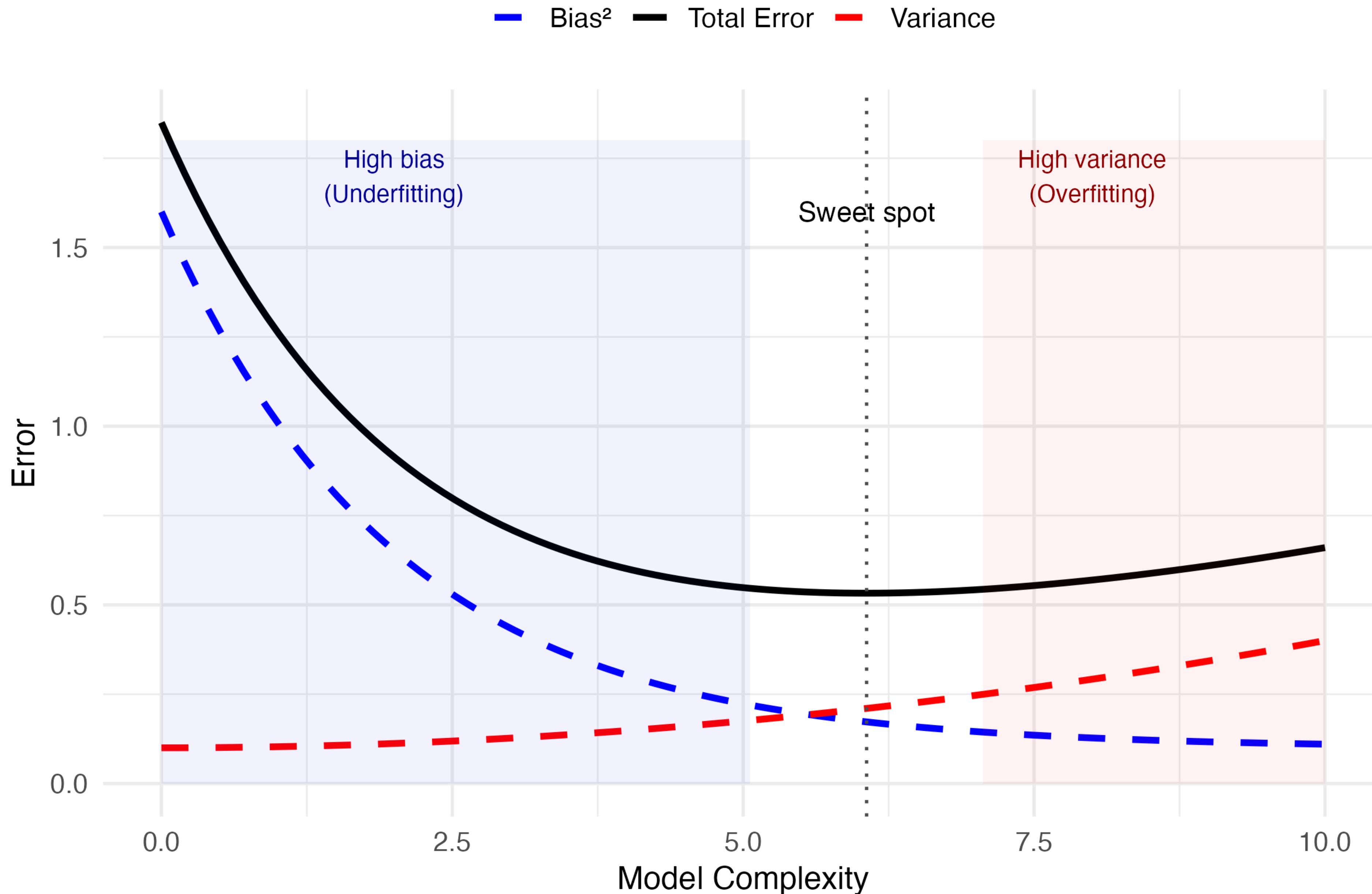


low bias
high variance



The Bias-Variance Tradeoff

Total error is minimized at intermediate complexity



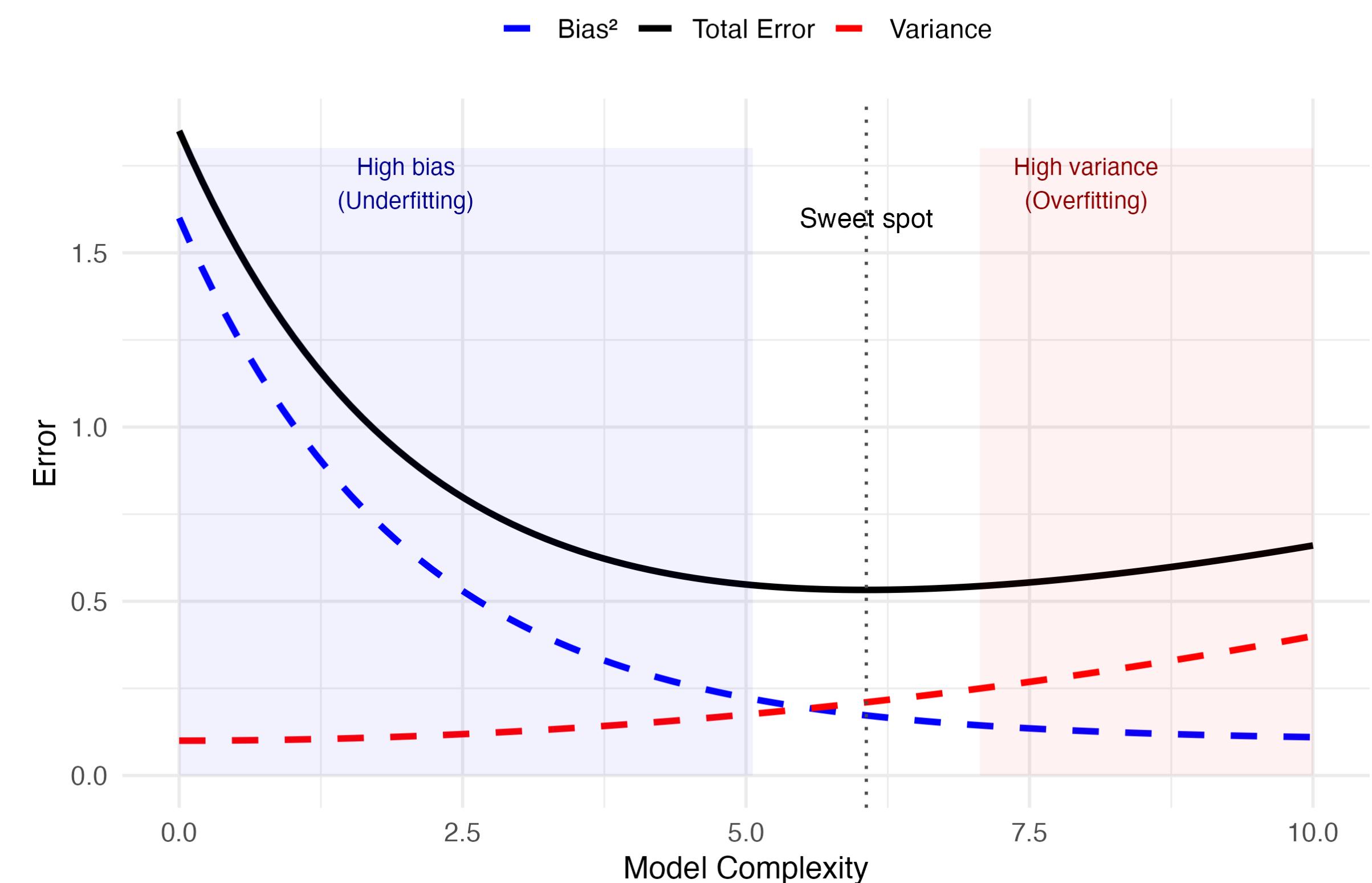
Bias/Variance Decomposition

Bias/Variance Decomposition

- We have the **intuition** of why Bias and Variance are in a tradeoff
 - What can we say **mathematically**?
- We are able to **decompose** the definition of model error:
 - $\mathbb{E}[(y - \hat{f}(x))^2]$ (model error)
 - $= \text{Bias}^2 + \text{Variance} + \text{noise}$
 - Here's how

The Bias-Variance Tradeoff

Total error is minimized at intermediate complexity



Starting the Derivation

Starting the Derivation

- Start with a **fixed test datapoint** x . The **true relationship** we want to model is $y = f^*(x) + \epsilon$

Starting the Derivation

- Start with a **fixed test datapoint** x . The **true relationship** we want to model is $y = f^*(x) + \epsilon$
- y : the **actual/desired output**

Starting the Derivation

- Start with a **fixed test datapoint** x . The **true relationship** we want to model is $y = f^*(x) + \epsilon$
 - y : the **actual/desired output**
 - $f^*(x)$: the **perfect model** (the function we're trying to learn)

Starting the Derivation

- Start with a **fixed test datapoint** x . The **true relationship** we want to model is $y = f^*(x) + \epsilon$
 - y : the **actual/desired output**
 - $f^*(x)$: the **perfect model** (the function we're trying to learn)
 - ϵ : **noise** (intrinsic randomness we always consider part of the data)

Starting the Derivation

- Start with a **fixed test datapoint** x . The **true relationship** we want to model is $y = f^*(x) + \epsilon$
 - y : the **actual/desired output**
 - $f^*(x)$: the **perfect model** (the function we're trying to learn)
 - ϵ : **noise** (intrinsic randomness we always consider part of the data)
- We'll assume our **training set is random**

Starting the Derivation

- Start with a **fixed test datapoint** x . The **true relationship** we want to model is $y = f^*(x) + \epsilon$
 - y : the **actual/desired output**
 - $f^*(x)$: the **perfect model** (the function we're trying to learn)
 - ϵ : **noise** (intrinsic randomness we always consider part of the data)
- We'll assume our **training set is random**
 - What is the **expected error** for the model, across **all possible training sets?**

Starting the Derivation

- Start with a **fixed test datapoint** x . The **true relationship** we want to model is $y = f^*(x) + \epsilon$
 - y : the **actual/desired output**
 - $f^*(x)$: the **perfect model** (the function we're trying to learn)
 - ϵ : **noise** (intrinsic randomness we always consider part of the data)
- We'll assume our **training set is random**
 - What is the **expected error** for the model, across **all possible training sets**?
 - $\mathbb{E}[(y - \hat{f}(x))^2]$ (this is what we will **decompose**)

Decomposition

Decomposition

- Start with $\mathbb{E}[(y - \hat{f}(x))^2]$ (previous slide)

Decomposition

- Start with $\mathbb{E}[(y - \hat{f}(x))^2]$ (previous slide)
- Substitute $y = f^*(x) + \epsilon$

Decomposition

- Start with $\mathbb{E}[(y - \hat{f}(x))^2]$ (previous slide)
- Substitute $y = f^*(x) + \epsilon$
 - $\mathbb{E}[(f^*(x) + \epsilon - \hat{f}(x))^2]$

Decomposition

- Start with $\mathbb{E}[(y - \hat{f}(x))^2]$ (previous slide)
- Substitute $y = f^*(x) + \epsilon$
 - $\mathbb{E}[(f^*(x) + \epsilon - \hat{f}(x))^2]$
- Add and subtract $\mathbb{E}[\hat{f}(x)]$ (trick)

Decomposition

- Start with $\mathbb{E}[(y - \hat{f}(x))^2]$ (previous slide)
- Substitute $y = f^*(x) + \epsilon$
 - $\mathbb{E}[(f^*(x) + \epsilon - \hat{f}(x))^2]$
- Add and subtract $\mathbb{E}[\hat{f}(x)]$ (trick)
 - $$\mathbb{E} \left[\underbrace{(f^*(x) - \mathbb{E}[\hat{f}(x)])}_{\text{bias (constant)}} + \underbrace{\mathbb{E}[\hat{f}(x)] - \hat{f}(x)}_{\text{variance (random)}} + \underbrace{\epsilon}_{\text{noise (random)}} \right]^2$$

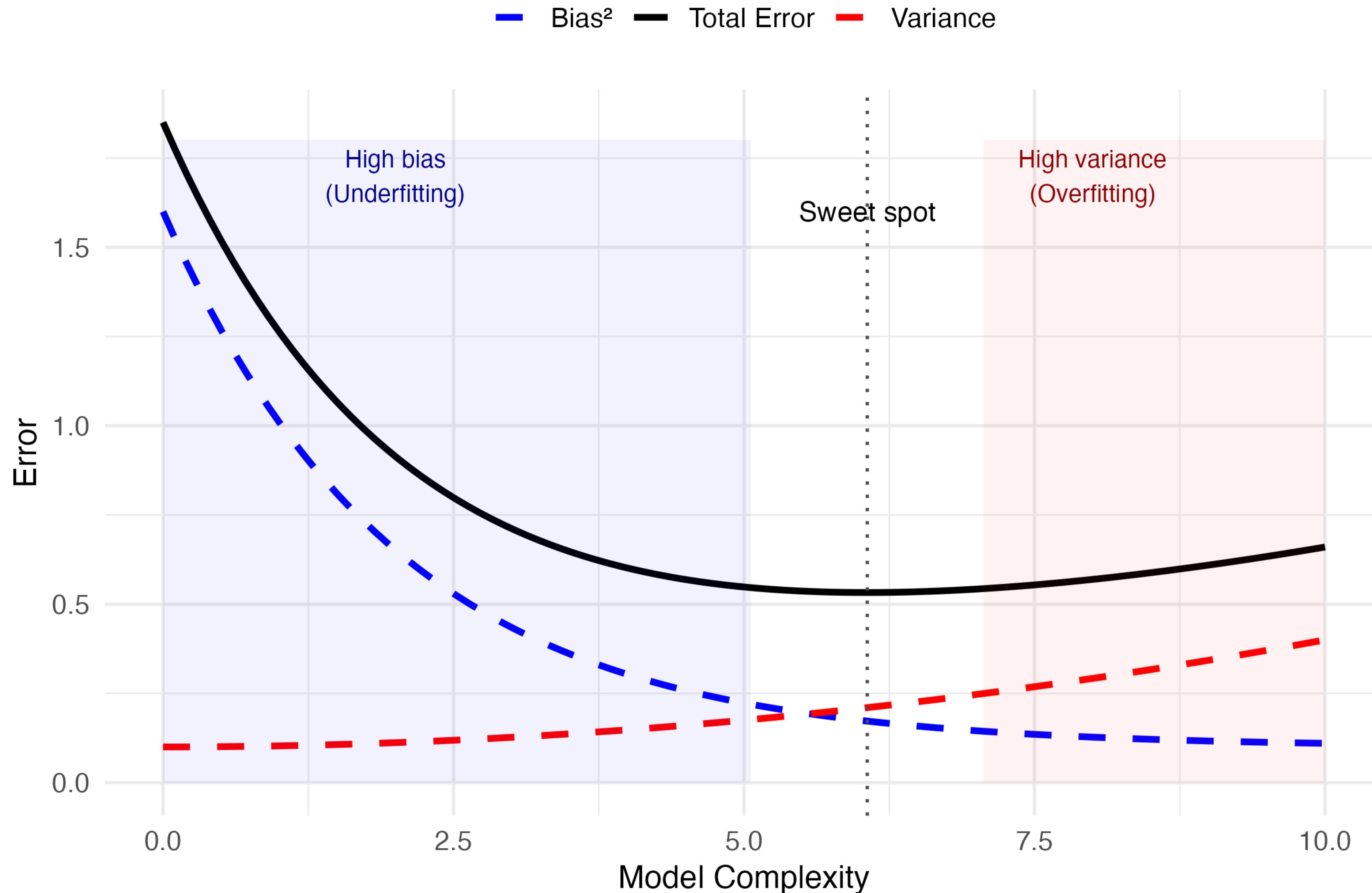
Decomposition

- Finally, with some algebra we get the **equation seen below**
- Model error is **decomposable** into Bias² + Variance + Noise
 - This is why there will **always be a tradeoff!**
- Bias: the difference between the **model** and the **true (ideal) function**
- Variance: the difference between the **model** and **its own mean**
- Noise: **intrinsic randomness** in the data

$$\mathbb{E}[(y - \hat{f}(x))^2] = \underbrace{(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2}_{\text{Bias}^2} + \underbrace{\mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2]}_{\text{Variance}} + \underbrace{\sigma^2}_{\text{Irreducible}}$$

The Bias-Variance Tradeoff

Total error is minimized at intermediate complexity



Bayesian Priors

Bayes' Rule

$$P(A | B) := \frac{P(A \cap B)}{P(B)}$$

Def. of Conditional Probability

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

Bayes' Rule

Bayes' Rule

- Bayesian statistics works with **Conditional Probabilities**
- $P(A | B)$: what is the probability of A **given B**?

$$P(A | B) := \frac{P(A \cap B)}{P(B)}$$

Def. of Conditional Probability

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

Bayes' Rule

Bayes' Rule

- Bayesian statistics works with **Conditional Probabilities**
 - $P(A | B)$: what is the probability of **A given B?**
- **Bayes' Rule:** an alternative definition useful for **statistical inference**
 - What is the probability of some **hypothesis, given observed data?**

$$P(A | B) := \frac{P(A \cap B)}{P(B)}$$

Def. of Conditional Probability

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

Bayes' Rule

Bayes' Rule Decomposition

$$P(H | D) = \frac{P(D | H)P(H)}{P(D)}$$

"Posterior"
What we want
to know

↓

What is the probability
of a hypothesis **given**
our data?

"Likelihood"
How likely is the
data under each
hypothesis?

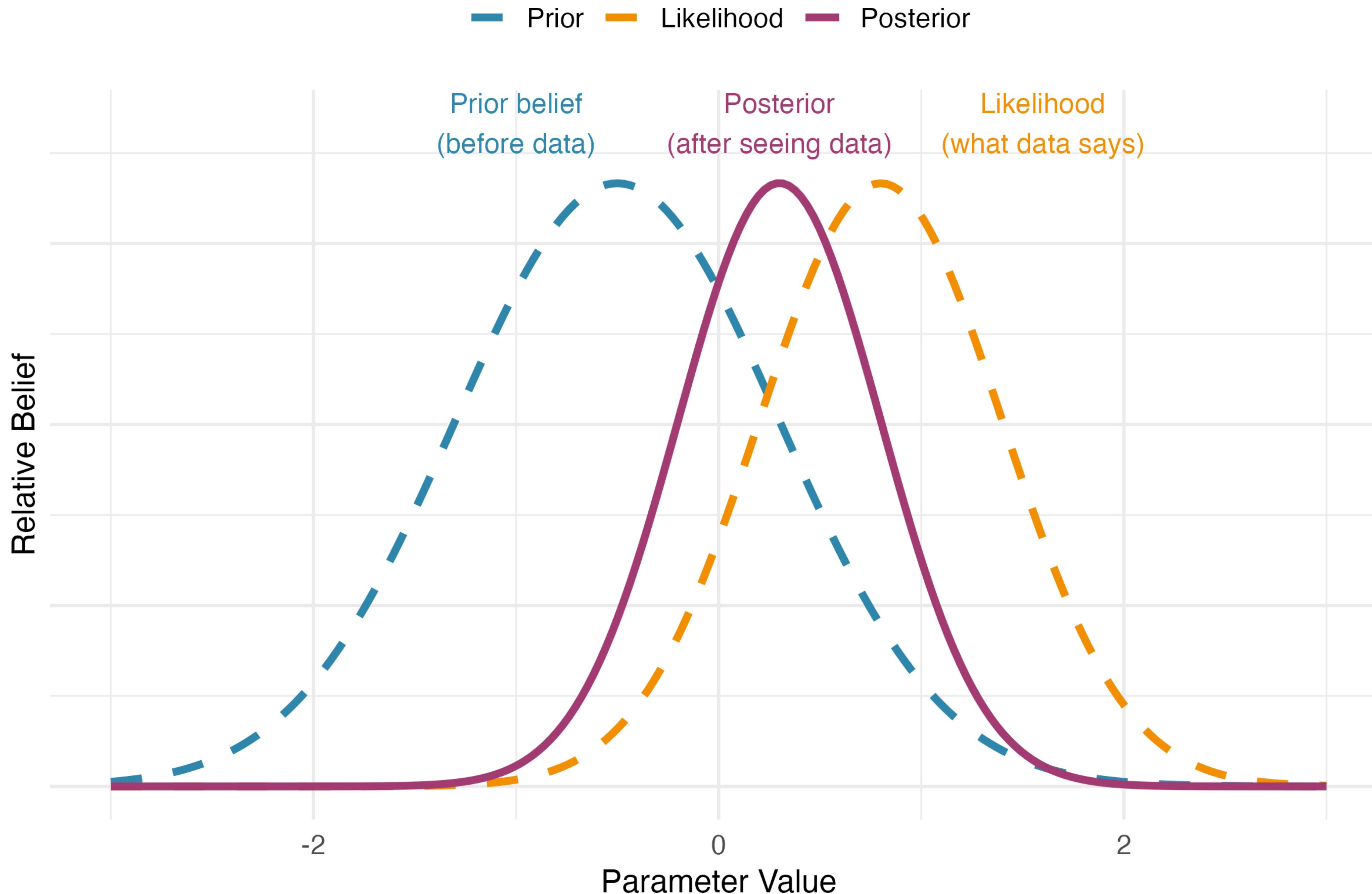
↓

"Prior"
What is our
prior belief
about H?

↓

Bayesian Update: Posterior \sim Likelihood \times Prior

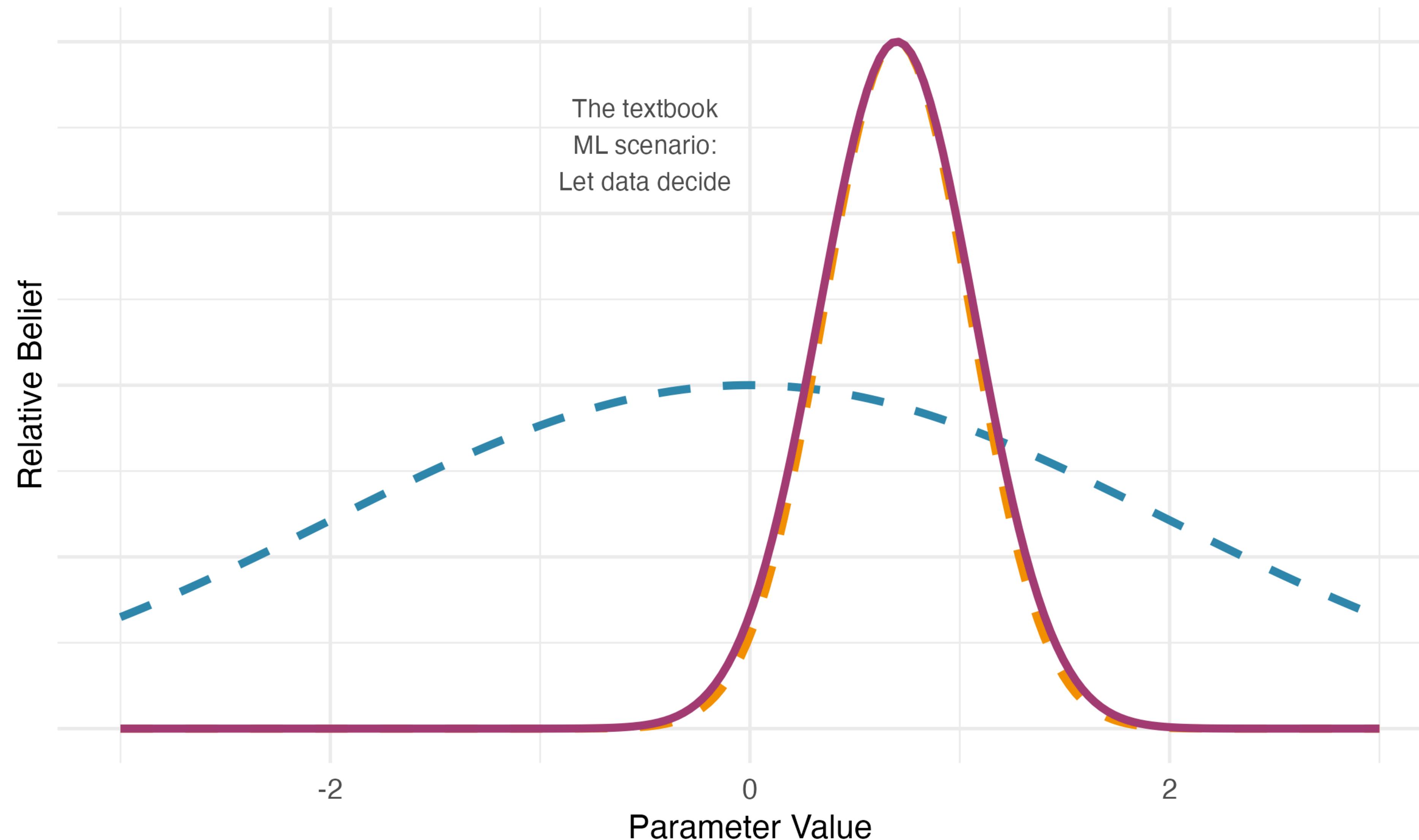
Posterior is a compromise between what you believed and what the data tells you



Weak Prior + Lots of Data

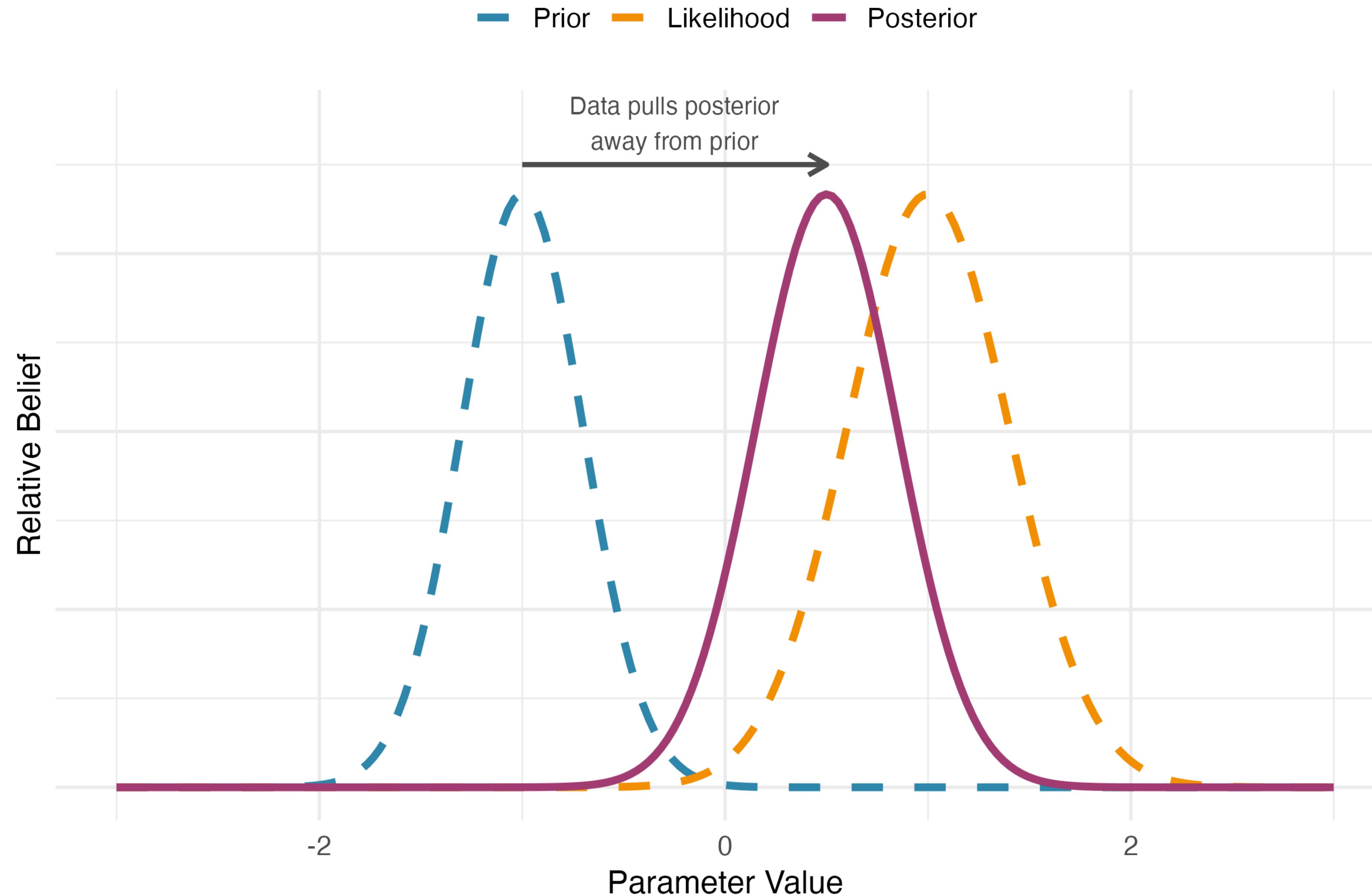
Data speaks for itself - posterior \approx likelihood

Prior Likelihood Posterior



Tight Prior + Lots of Data

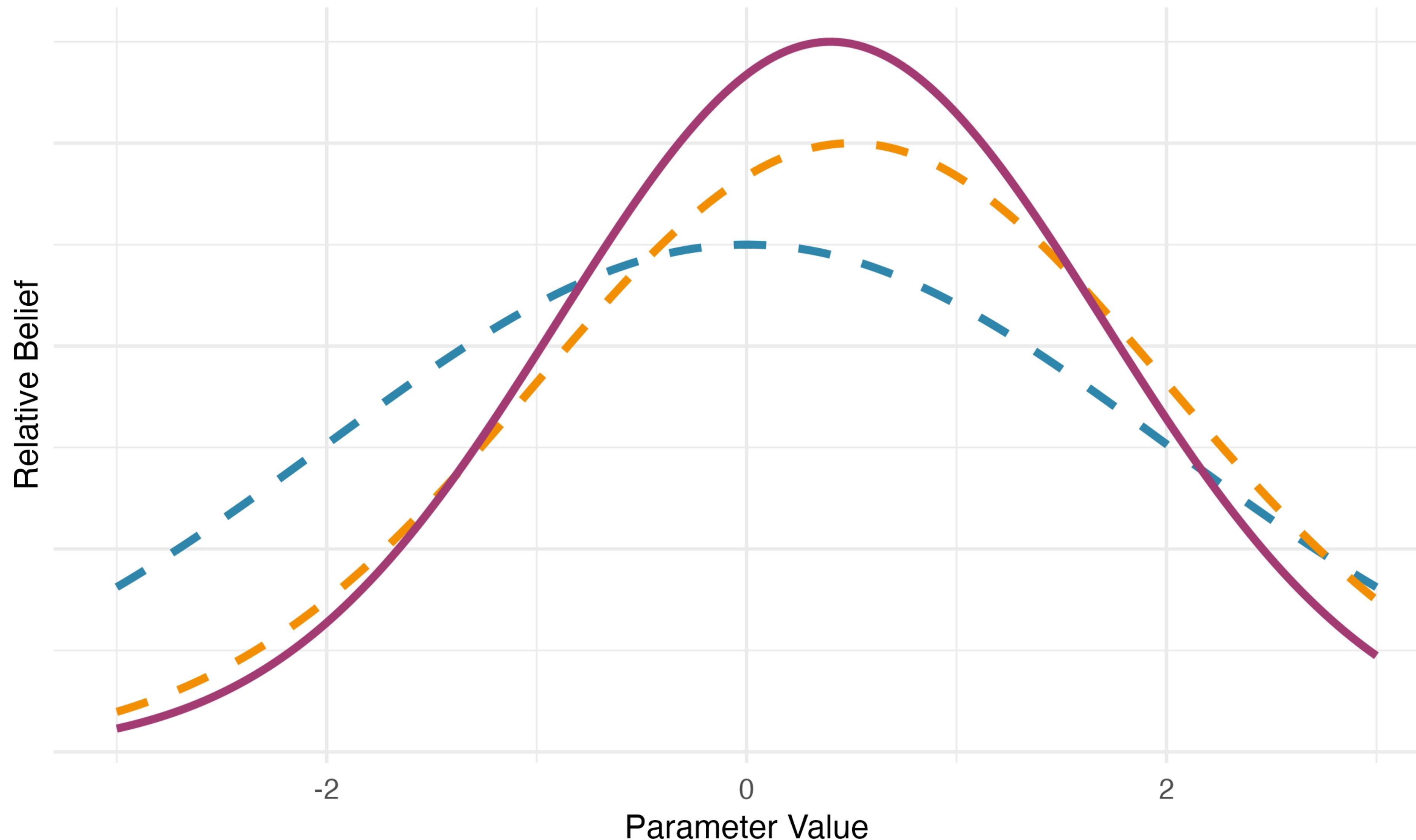
Strong evidence can overcome strong assumptions



Weak Prior + Little Data

No strong assumptions + weak evidence = high uncertainty

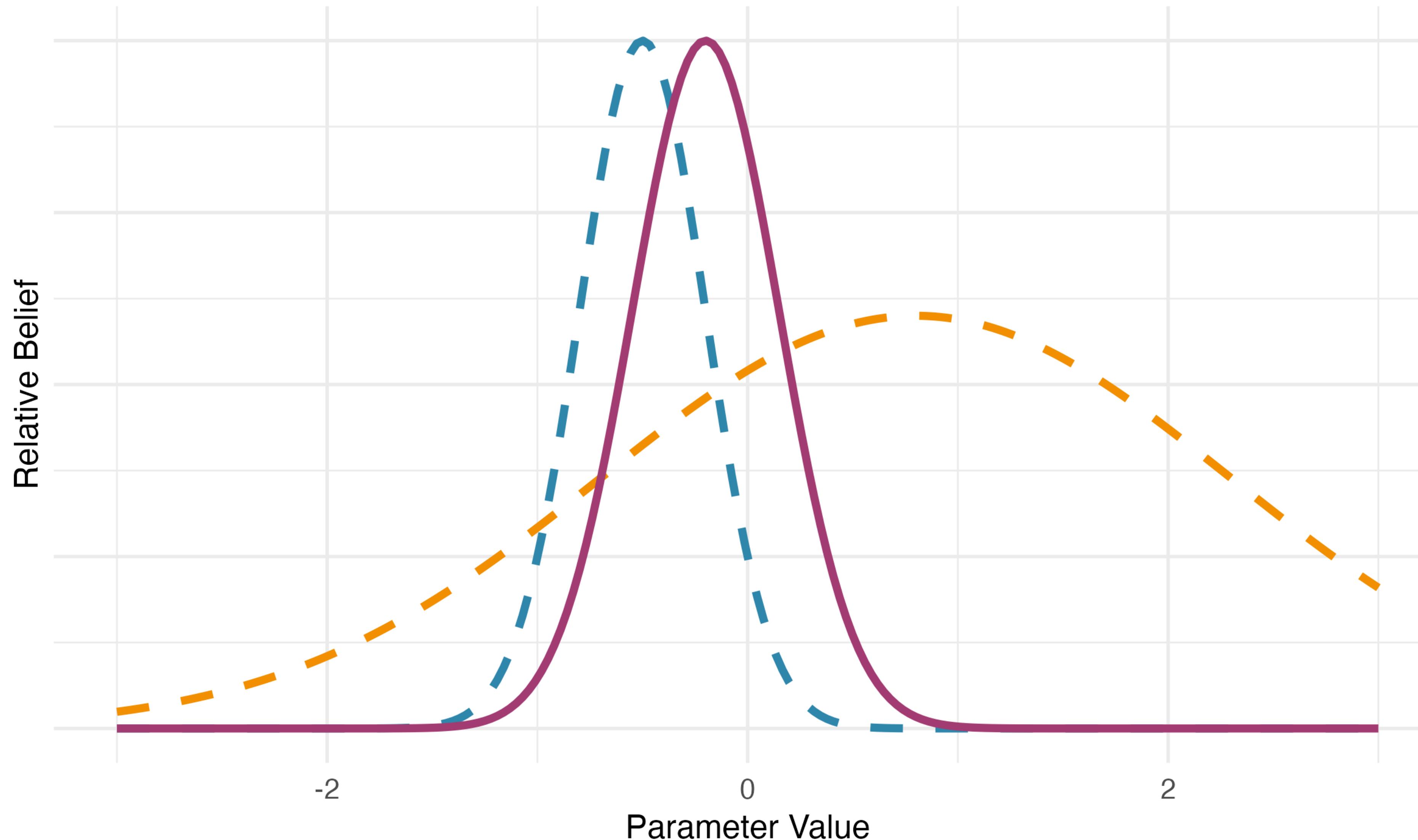
Prior Likelihood Posterior



Tight Prior + Little Data

Strong assumptions dominate weak evidence - posterior \approx prior

Prior Likelihood Posterior



Prior Strength \times Data Amount: Four Scenarios
Row 1: Little Data (Weak Evidence) | Row 2: Lots of Data (Strong Evidence)

Tight Prior + Little Data

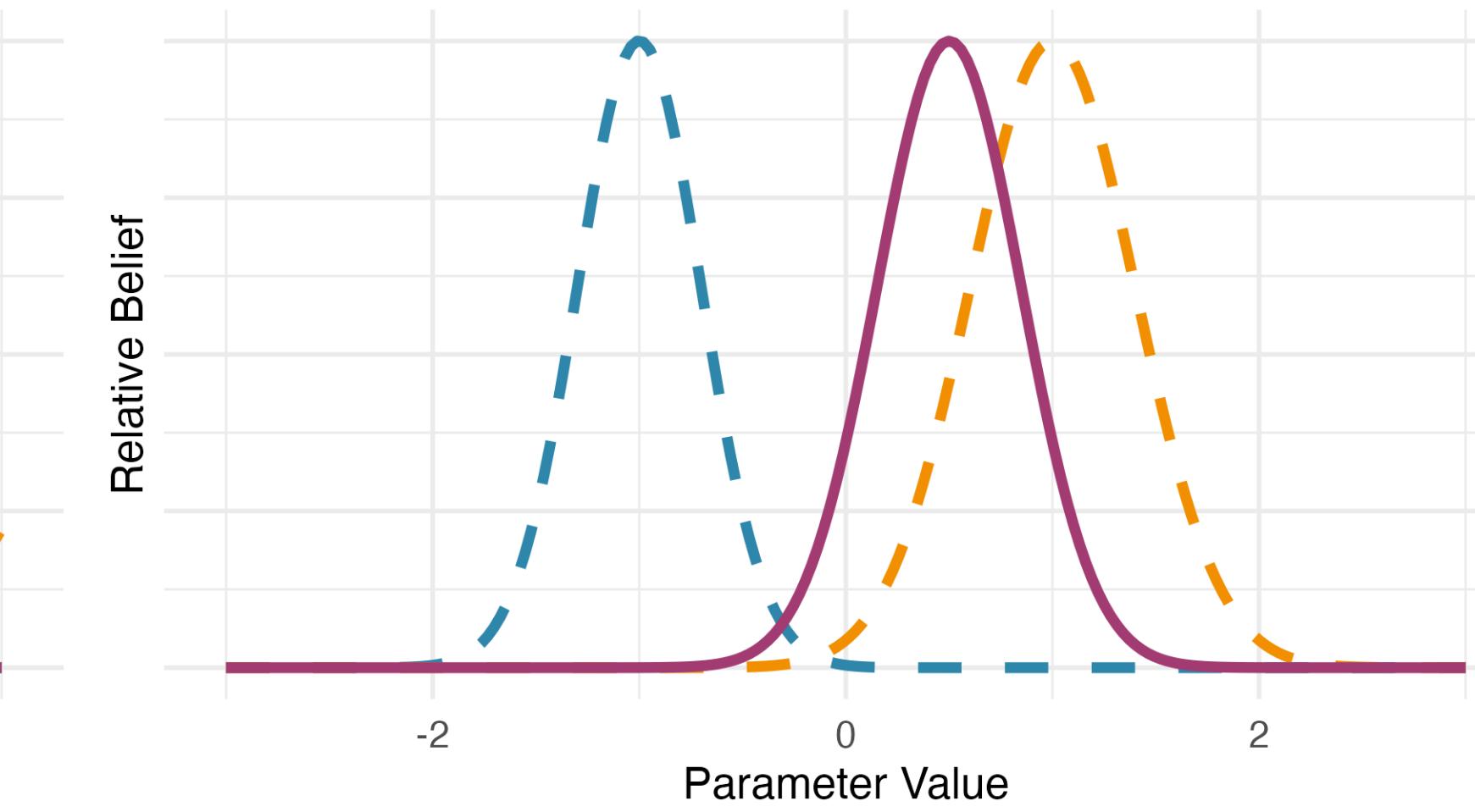
Posterior \approx Prior



Tight Prior + Lots of Data

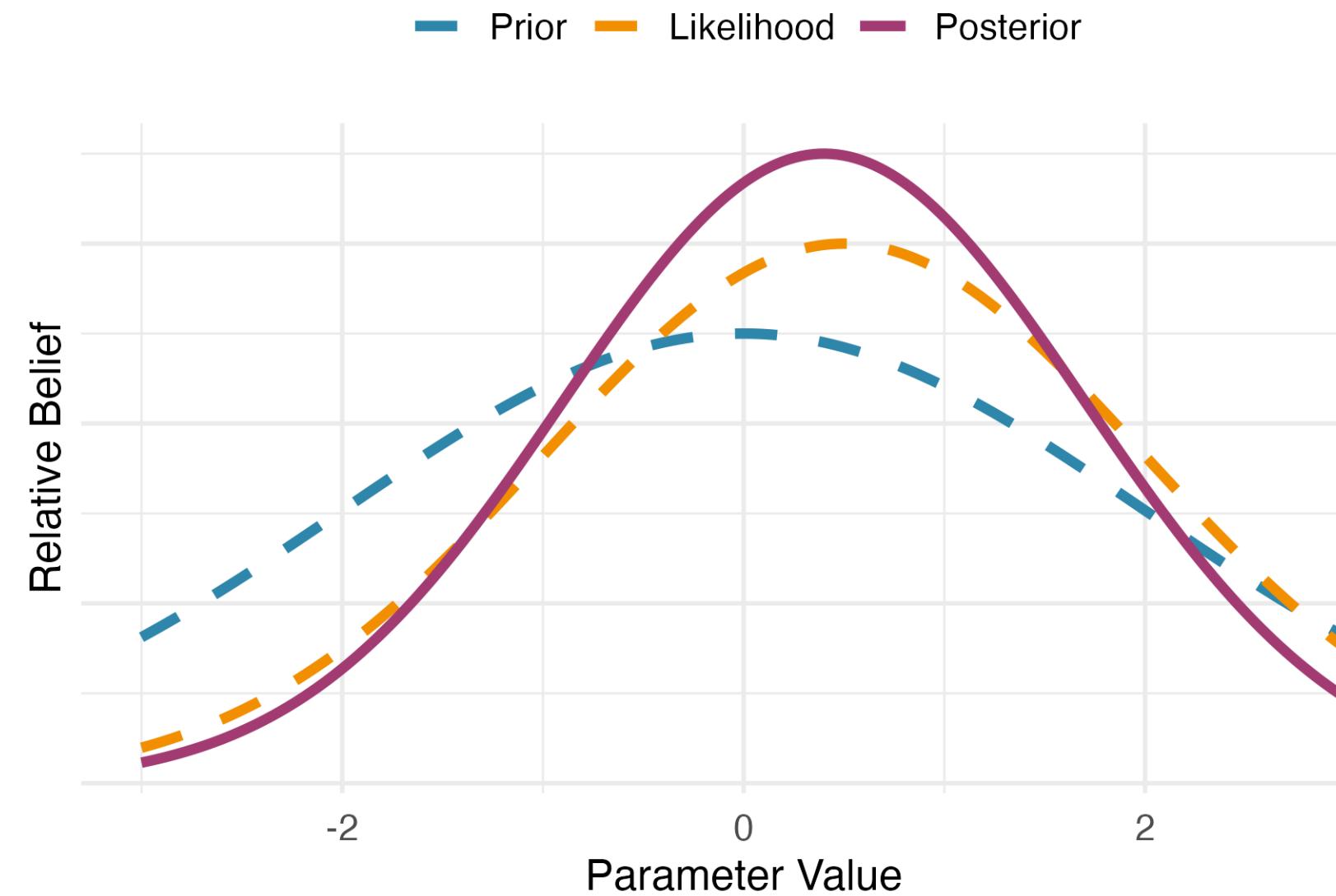
Data Pulls Away from Prior

Prior Likelihood Posterior



Weak Prior + Little Data

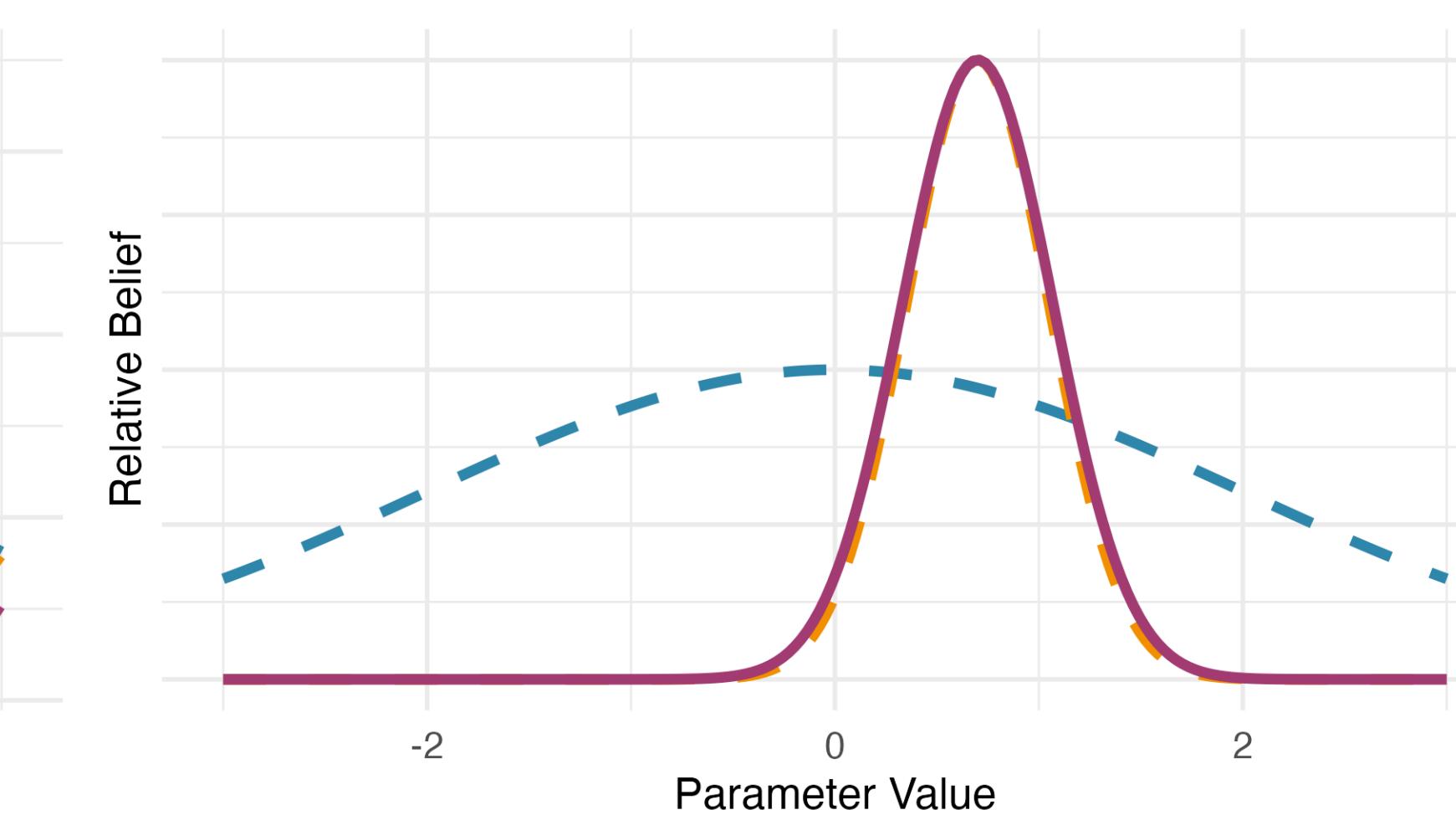
High Uncertainty



Weak Prior + Lots of Data

Posterior \approx Likelihood

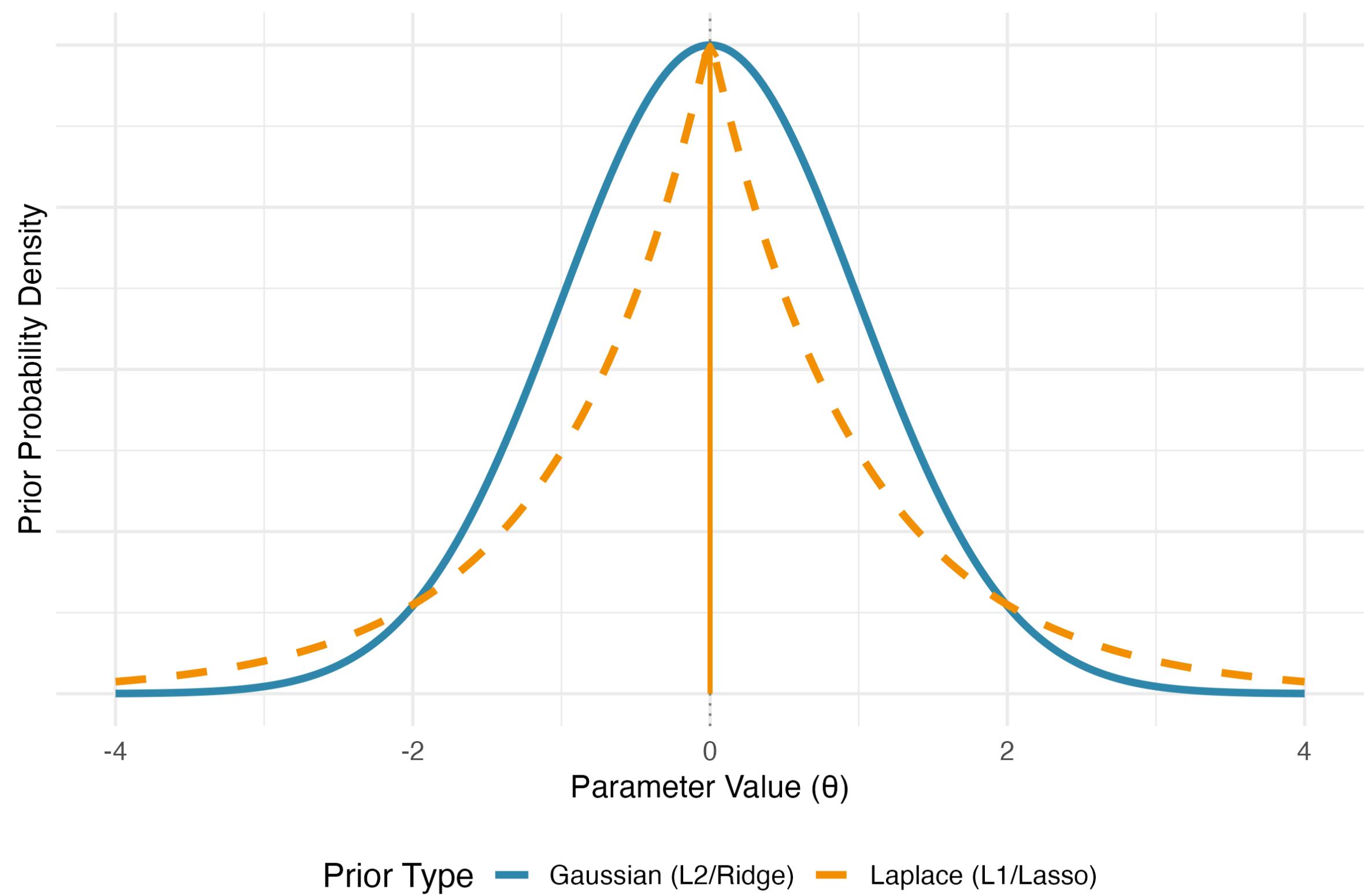
Prior Likelihood Posterior



Bayesian Thinking

Regularization as Bayesian Priors

Different priors encourage different solutions

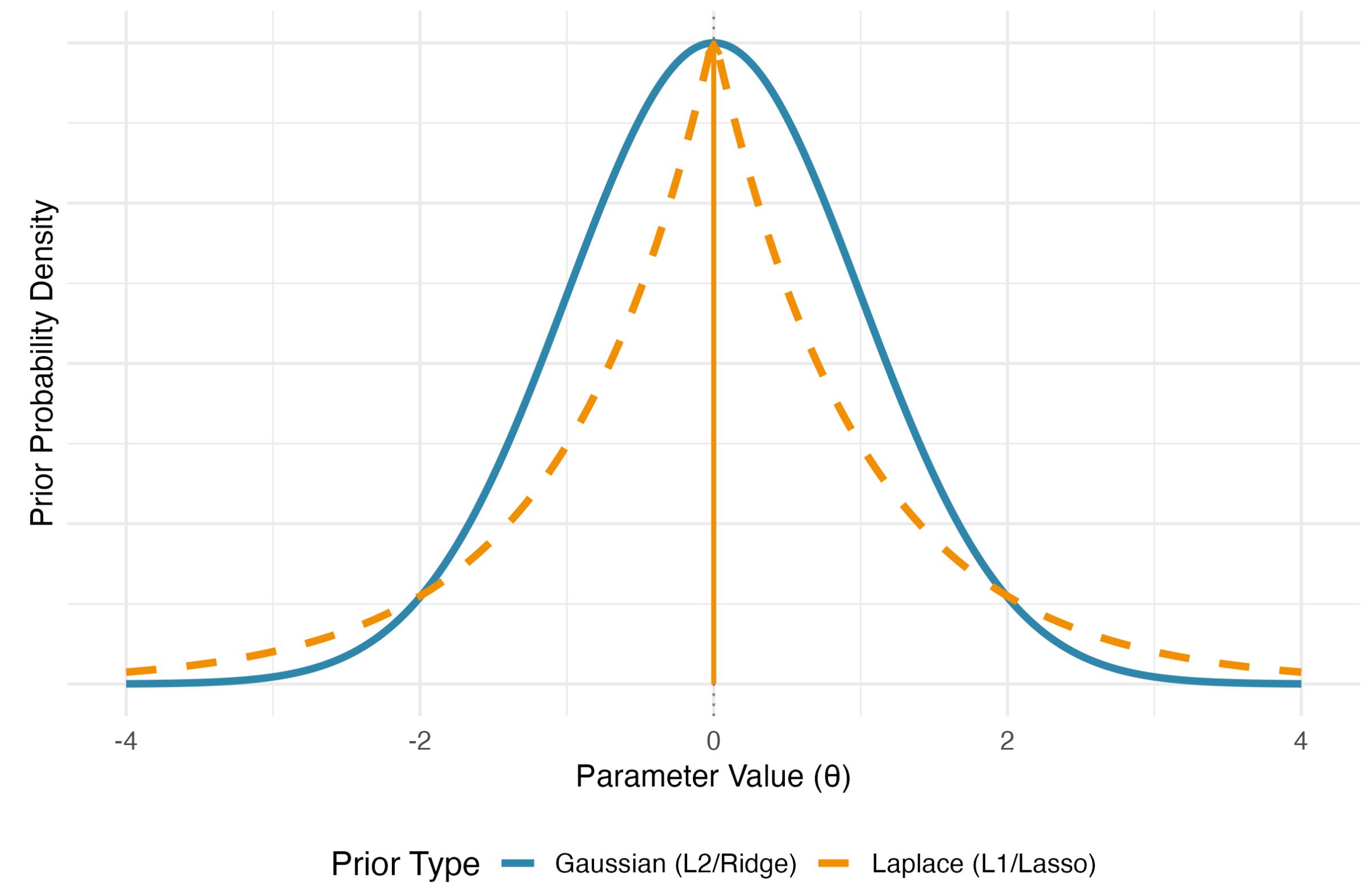


Bayesian Thinking

- Key point: we do **NOT** have to use **Bayesian models** in order to engage in **Bayesian thinking!**
- Bayesian Machine Learning exists! But the insights **apply to other models** too

Regularization as Bayesian Priors

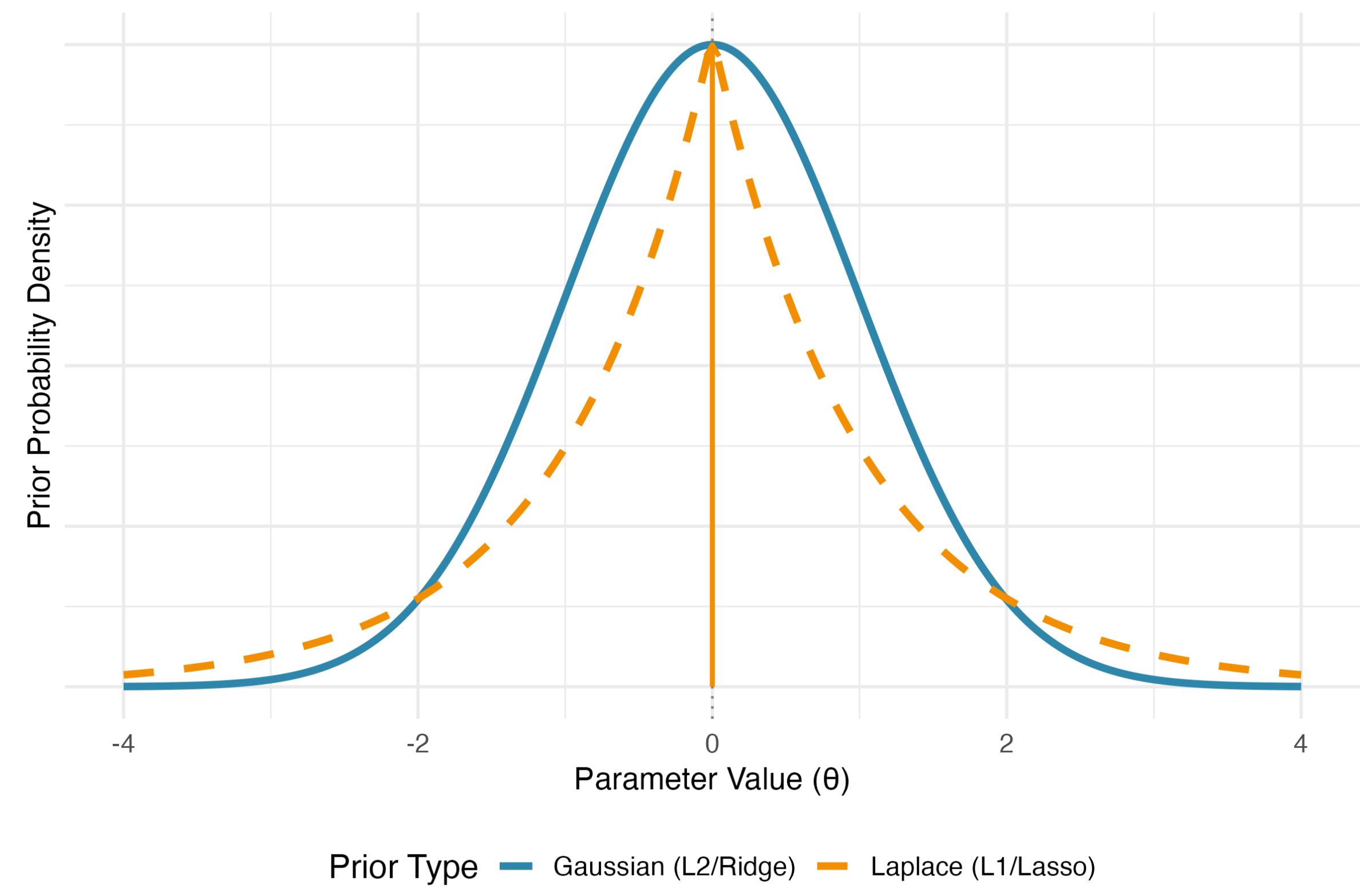
Different priors encourage different solutions



Bayesian Thinking

- Key point: we do **NOT** have to use **Bayesian models** in order to engage in **Bayesian thinking!**
- Bayesian Machine Learning exists! But the insights **apply to other models** too
- Example: **parameter regularization** is essentially applying a **prior probability on small weights!**

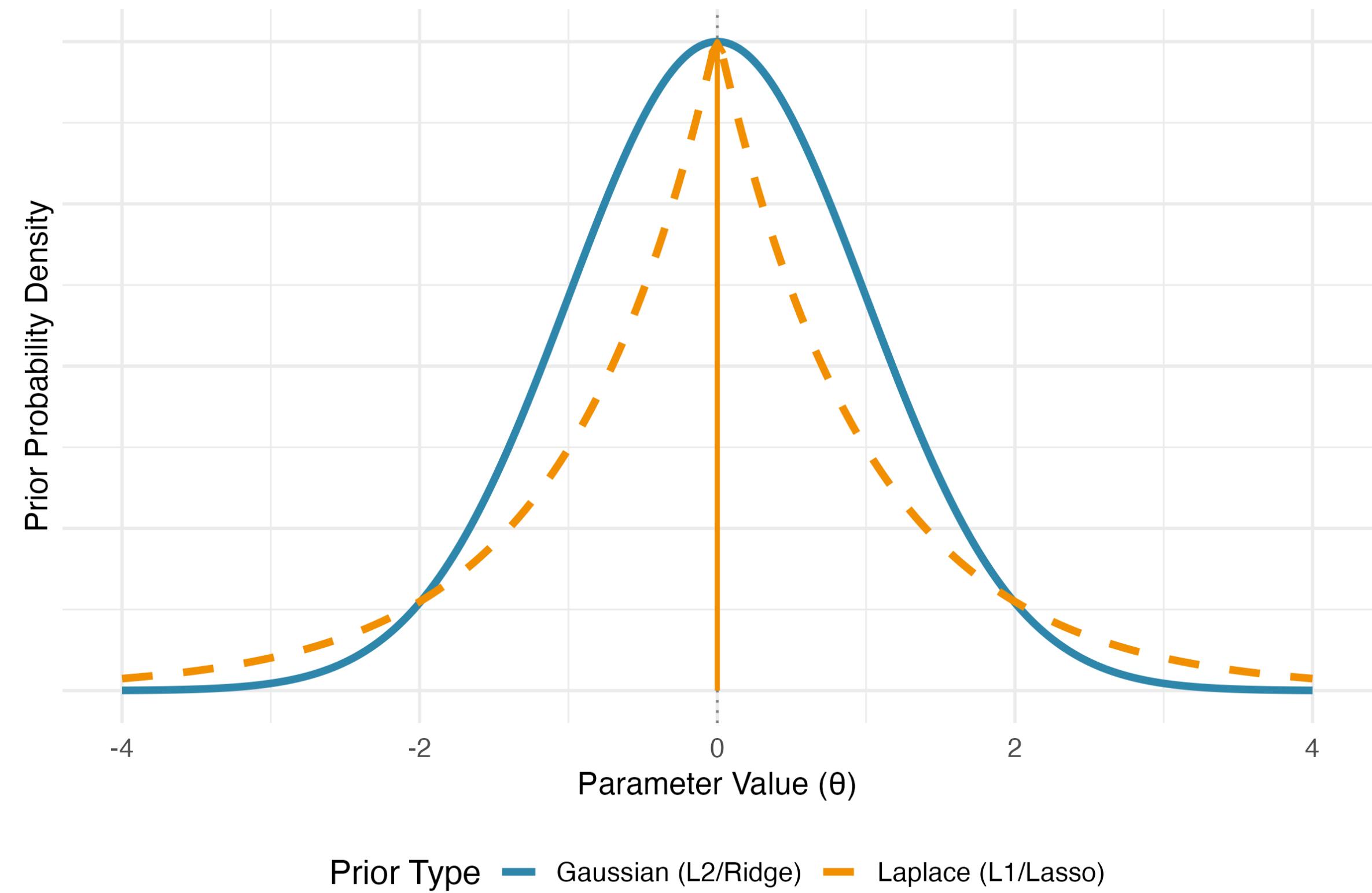
Regularization as Bayesian Priors
Different priors encourage different solutions



Reminder: Norm Regularization

Regularization as Bayesian Priors

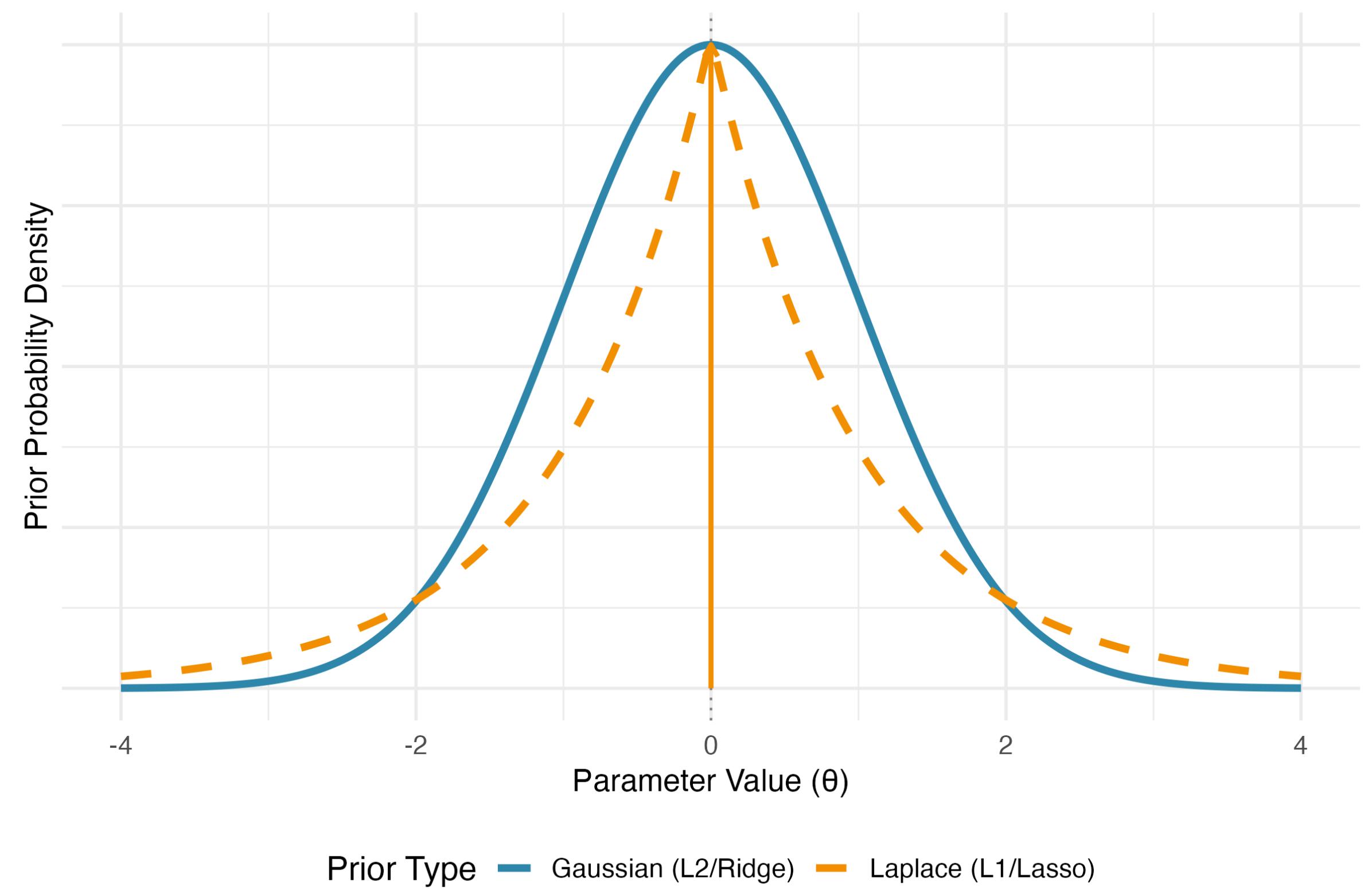
Different priors encourage different solutions



Reminder: Norm Regularization

- **L2 Regularization:** penalizes large weights
- Strength controlled by **hyperparameter λ :** loss $+= \lambda \sum \theta_i^2$

Regularization as Bayesian Priors
Different priors encourage different solutions

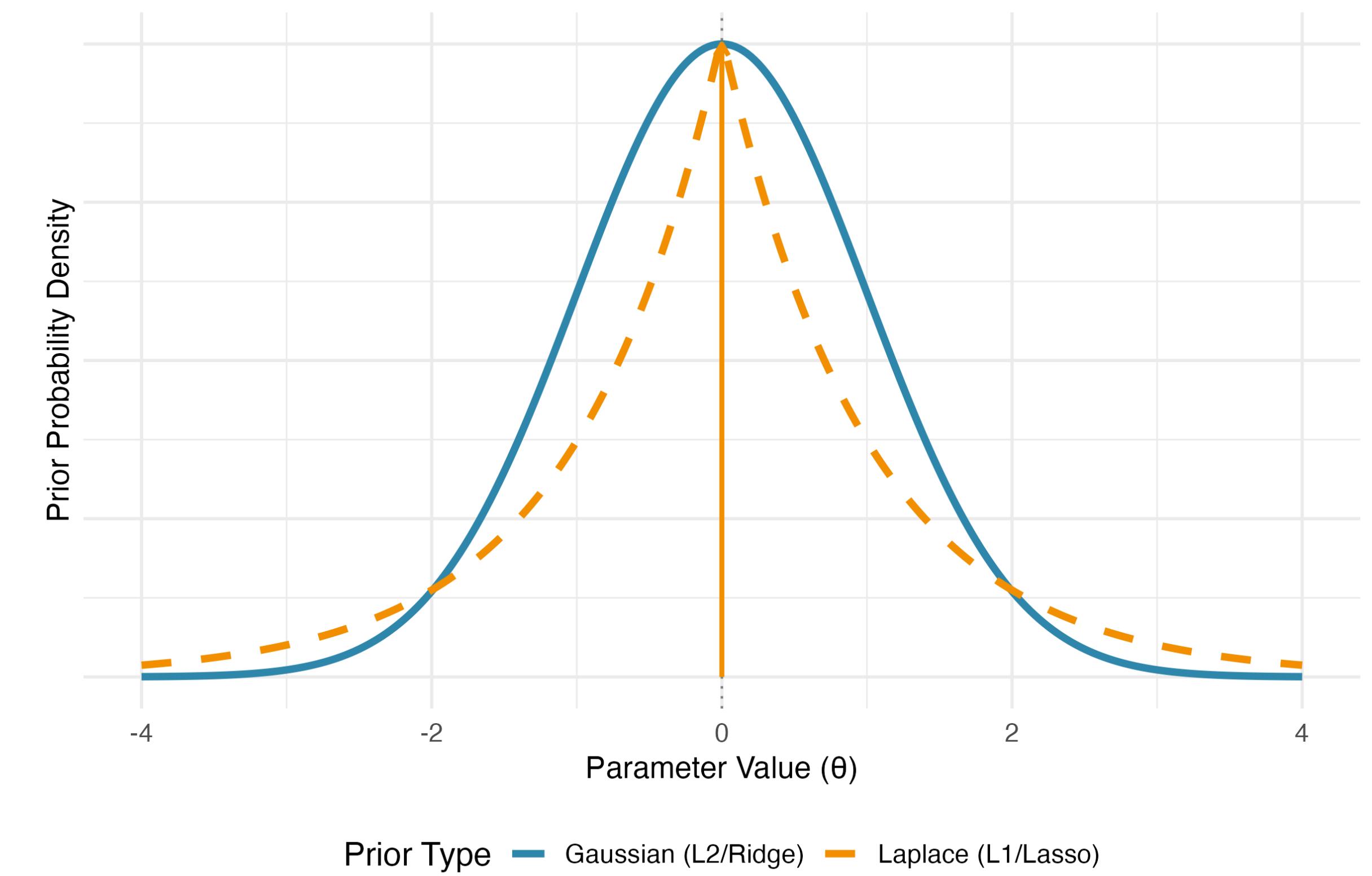


Reminder: Norm Regularization

- **L2 Regularization:** penalizes large weights
 - Strength controlled by **hyperparameter λ :** loss $+= \lambda \sum \theta_i^2$
- **L1 Regularization:** penalizes large weights (in a different way)
 - Tends to **drive some weights to zero** (creating a sparse model)
 - loss $+= \lambda \sum |\theta_i|$

Regularization as Bayesian Priors

Different priors encourage different solutions



Regularization Strength (λ) Controls Prior Influence

Larger λ = stronger prior = posterior pulled toward zero

