Inductive Bias

DSCC 251/451: Machine Learning with Limited Data
C.M. Downey
Spring 2026
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Blas vs. Variance Recap




What Overfitting Looks Like
Training loss keeps improving, but validation loss increases

== Training == Validation
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The Generalization Gap Depends on Data Size
This is the fundamental picture of the course

“©= Test Error =@ Training Error

Small n region Large n region
High overfitting risk Better generalization
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Model Complexity vs. Overfitting
Blue = training data, Orange = test data, Dashed = true function

° Degree 1 ° Degree 4

Train: 0.011
Test: 0.100
Good fit

° Degree 8

Train: 0.000
Test: 2.173
Severe overfitting
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Bias and Variance
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Error
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The Bias-Variance Tradeoff
Total error is minimized at intermediate complexity

== Bigs? === Total Error == Variance

High bias

fitti 3
\ (Underfitting) Sweejt Spot

High variance
(Overfitting)

0.0 2.5 5.0
Model Complexity

7.5

10.0

[TYsROCHESTER

/7



Blas/Variance Decomposition



Blas/Variance Decomposition

e We have the intuition of why Bias The BiasVariance Tradeoft
otal error I1Is minimized at intermeadiate complexity
and Varlance are In a. tradeOff == Bjas?2 === Total Error == Variance
e What can we say mathematically? igh bias ;S
(Underfitting) . (Overfitting)
\ Swee;t spot

e \We are able to decompose the
definition of model error:

o E[(y —f(x))z] (model error)
o= Bias? + Variance + noise

e Here's how

0.0 2.5 5.0 7.5 10.0
Model Complexity
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Starting the Derivation
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Starting the Derivation

e Start with a fixed test datapoint x. The true relationship we want to
model is y = f*(x) + €
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Starting the Derivation

e Start with a fixed test datapoint x. The true relationship we want to
model is y = f*(x) + €

e V: the actual/desired output
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Starting the Derivation

e Start with a fixed test datapoint x. The true relationship we want to
model is y = f*(x) + €

e V: the actual/desired output

e /*(x): the perfect model (the function we're trying to learn)
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Starting the Derivation

e Start with a fixed test datapoint x. The true relationship we want to
model is y = f*(x) + €

e V: the actual/desired output
e /*(x): the perfect model (the function we're trying to learn)

e €: hoise (intrinsic randomness we always consider part of the data)
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Starting the Derivation

e Start with a fixed test datapoint x. The true relationship we want to
model is y = f*(x) + €

e V: the actual/desired output
e /*(x): the perfect model (the function we're trying to learn)

e €: hoise (intrinsic randomness we always consider part of the data)

e We'll assume our training set is random
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Starting the Derivation

e Start with a fixed test datapoint x. The true relationship we want to
model is y = f*(x) + €

e V: the actual/desired output
e /*(x): the perfect model (the function we're trying to learn)

e €: hoise (intrinsic randomness we always consider part of the data)

e We'll assume our training set is random

e What is the expected error for the model, across all possible training sets?
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Starting the Derivation

e Start with a fixed test datapoint x. The true relationship we want to
model is y = f*(x) + €

e V: the actual/desired output
e /*(x): the perfect model (the function we're trying to learn)

e €: hoise (intrinsic randomness we always consider part of the data)

e We'll assume our training set is random

e What is the expected error for the model, across all possible training sets?

o E[(y— f(x))z] (this Is what we will decompose)
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e Start with

Decomposition

| (y — f(x))z] (previous slide)
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Decomposition

e Start with E[(y — f(x))z] (previous slide)

e Substitute y = f*(x) + ¢
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Decomposition

e Start with E[(y — f(x))z] (previous slide)

e Substitute y = f*(x) + ¢
o E[(/*(x) + € — f(x))’]
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Decomposition

e Start with E[(y — f(x))z] (previous slide)

e Substitute y = f*(x) + ¢

e Add and subtract

o E[(f*(x) + € — f(x))*]

[ f(x)] (trick)
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e Substitute y = f*(x) + ¢
o E[(f*(x) + € — f(x))*]
e Add and subtract

= | (£ -

Decomposition

e Start with E[(y — f(x))z] (previous slide)

[ f(x)] (trick)
[f)]l+ E[f(0)] — fx) +

kbias (canstant) J

variancev(random)

€

noise (random)
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Decomposition

e Finally, with some algebra we get the equation seen below

e Model error is decomposable into Bias? + Variance + Noise

e This is why there will always be a tradeoff!

e Bias: the difference between the model and the true (ideal) function

e Variance: the difference between the model and its own mean

e Noise: intrinsic randomness in the data

(v — f(0)2] = (fF(x) —

LD +

Bias®

C[(f(x) — E[Lf(0)])?] +

Variance

62

Irreducible
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The Bias-Variance Tradeoff
Total error is minimized at intermediate complexity

== Bigs? === Total Error == Variance

High bias
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\ (Underfitting) Sweejt Spot

High variance
(Overfitting)
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Bayes Rule

P(A N B)

P(B)
Def. of Conditional Probability

P(A|B) :=

P(A|B) = 0

Bayes' Rule

P(B|A)P(A)
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Bayes Rule

e Bayesian statistics works with
Conditional Probabilities

e P(A|B): what is the probability of
A given B?

P(A N B)

P(B)
Def. of Conditional Probability

P(A|B) :=

P(A|B) = P

Bayes' Rule

P(B|A)P(A)
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Bayes Rule

® Bayez:‘,l-an statistics V\{C?rl.(S with P( AN B)
Conditional Probabilities P(A | B) A ———
e P(A | B): what is the probability of P(B)
A given B? Def. of Conditional Probability
e Bayes' Rule: an alternative definition
useful for statistical inference P(A|B) P(B|A)P(A)
e What is the probability of some B P( B)

hypothesis, given observed
data?

Bayes' Rule
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Bayes' Rule Decomposition

"Likelihood" "Prior"

How likely is the What is our

o e e
What we want yP SIS '

0 know | |

| PD|H)P(H
Pt oy < PR IDPED
What is the probability P (D)

of a hypothesis given
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Relative Belief

Bayesian Update: Posterior ~ Likelihood x Prior
Posterior is a compromise between what you believed and what the data tells you

== Prior == Likellhood === Posterior

Prior belief Posterior Likelihood
(before data) (after seeing data) (what data says)
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Parameter Value
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Relative Belief

Weak Prior + Lots of Data
Data speaks for itself - posterior = likelihood

== Prior == Likellhood === Posterior

The textbook
ML scenario:
Let data decide

-2 0
Parameter Value
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Relative Belief

Tight Prior + Lots of Data
Strong evidence can overcome strong assumptions

== Prior == Likellhood === Posterior

Data pulls posterior
away from prior
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Parameter Value
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Relative Belief

Weak Prior + Little Data
No strong assumptions + weak evidence = high uncertainty

== Prior == Likellhood === Posterior

-~ ~
7’ \
/—-—~
- ~
_ /
P /
/7 /4
V4
V4
V4
7
P V/
Vg
7
> <
-
2 0

Parameter Value

[TYsROCHESTER

20



Relative Belief

Tight Prior + Little Data
Strong assumptions dominate weak evidence - posterior = prior

== Prior == Likellhood === Posterior
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Prior Strength x Data Amount: Four Scenarios
Row 1: Little Data (Weak Evidence) | Row 2: Lots of Data (Strong Evidence)

Tight Prior + Little Data Tight Prior + Lots of Data
Posterior = Prior Data Pulls Away from Prior
m==  Prior == Likelihood === Posterior m==  Prior == Likelihood === Posterior

© ©
© ©
m m
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(<)) (<))
o o
2 0 2 -2 0 2
Parameter Value Parameter Value
Weak Prior + Little Data Weak Prior + Lots of Data
High Uncertainty Posterior = Likelihood
m= Prior == Likelihood === Posterior m= Prior == Likelihood === Posterior
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Bayesian Thinking

Regularization as Bayesian Priors
Different priors encourage different solutions

Prior Probability Density

-4 -2 0 2 4
Parameter Value (0)

Prior Type == Gaussian (L2/Ridge) Laplace (L1/Lasso)
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Bayesian Thinking

O Key point: we do NOT have to use Regularization as Bayesian Priors
Different priors encourage different solutions
Bayesian models in order to
engage in Bayesian thinking!
e Bayesian Machine Learning exists!

But the insights apply to other
models too

Prior Probability Density

-4 -2 0 2 4
Parameter Value (9)

Prior Type == Gaussian (L2/Ridge) Laplace (L1/Lasso)
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Bayesian Thinking

O Key point: we do NOT have to use Regularization as Bayesian Priors
Different priors encourage different solutions
Bayesian models in order to
engage in Bayesian thinking!

e Bayesian Machine Learning exists! i
But the insights apply to other ;
models too 5
e Example: parameter regularization _/ ¥
IS essentially applying a prior . , : 4

Parameter Value (9)

probability on small weights!

Prior Type == Gaussian (L2/Ridge) Laplace (L1/Lasso)
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Reminder: Norm Regularization

Regularization as Bayesian Priors
Different priors encourage different solutions

Prior Probability Density

-4 -2 0 2 4
Parameter Value (9)

Prior Type == Gaussian (L2/Ridge) Laplace (L1/Lasso)
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Reminder: Norm Regularization

e L2 Regularization: penalizes large Regularization as Bayesian Priors

Different priors encourage different solutions
weights

e Strength controlled by
hyperparameter A: loss += /126’1.2

Prior Probability Density

-4 -2 0 2 4
Parameter Value (9)

Prior Type == Gaussian (L2/Ridge) Laplace (L1/Lasso)
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Reminder: Norm Regularization

e L2 Regularization: penalizes large Regularization as Bayesian Priors

Different priors encourage different solutions
weights

e Strength controlled by
hyperparameter A: loss += /126’1.2

e L1 Regularization: penalizes large
weights (in a different way)

e [ends to drive some weights to __/ 5 ¥

-4 -2 0 2 4

Prior Probability Density

zero (creating a sparse model) ot Valvo 6
O IOSS += /12 ‘ HZ | Prior Type == Gaussian (L2/Ridge) Laplace (L1/Lasso)
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Regularization Strength (A) Controls Prior Influence
Larger A = stronger prior = posterior pulled toward zero

Small A (Weak Regularization) Medium A Large A (Strong Regularization)

Parameter Value (0)

== Prior == Likelihood === Posterior
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