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What is Unsupervised Learning?



Unsupervised Learning
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Unsupervised Learning

e Negative definition: learning without labels (X but
no Y)

e [rue, but not very informative
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Unsupervised Learning

e Negative definition: learning without labels (X but
no Y)

e [rue, but not very informative
e Positive definition: discovering structure in data

e Especially structure that's useful for tasks that
you can't directly optimize
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Unsupervised Learning

e Negative definition: learning without labels (X but
no Y)

e [rue, but not very informative
e Positive definition: discovering structure in data

e Especially structure that's useful for tasks that
you can't directly optimize

e Why do unsupervised learning? Robust labeled
data is scarce/expensive

e But structure still exists in unlabeled data

e |f we can model it, we reduce dependence on
labels
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Types of Unsupervised Learning



Types of Unsupervised Learning

e We'll see two distinct "flavors"




Types of Unsupervised Learning

e We'll see two distinct "flavors"

e Today: discovering discrete/categorical
structure

® |.e. groupings, segments, boundaries, categories
e Approximates outputs you don't actually have

e Examples: clustering, segmentation, quantization
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Types of Unsupervised Learnmg

e We'll see two distinct "flavors"

e Today: discovering discrete/categorical
structure

® |.e. groupings, segments, boundaries, categories
e Approximates outputs you don't actually have

e Examples: clustering, segmentation, quantization

e Next time: discovering continuous structure
® |.e. representations, projections, embeddings

e Typically used as inputs to downstream tasks

e Examples: dimensionality reduction,
autoencoders
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The Unsupervised Pattern

l, UNIVERSITY ROCHESTER 5




The Unsupervised Pattern

e For both flavors, you can't optimize the
real objective (i.e. labels, outputs)

e You often optimize a surrogate objective
instead

e You then hope/hypothesize that the
surrogate correlates with the real
objective
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The Unsupervised Pattern

e For both flavors, you can't optimize the _
real objective (i.e. labels, outputs) ’ N °

e You often optimize a surrogate objective
instead

e You then hope/hypothesize that the
surrogate correlates with the real
objective

e "Cake" connection: unsupervised learning
IS the body of the cake

e |.e. the bulk of what we can learn

e Supervised learning is only the icing
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Surrogate Objectives




Surrogate Objectives

e Situation: you want to map raw data to meaningful categories/decisions

e But you don't have labels to learn that mapping directly




Surrogate Objectives

e Situation: you want to map raw data to meaningful categories/decisions

e But you don't have labels to learn that mapping directly

e Solution: optimize for something that you can learn/measure

e Should be something that correlates with your real goal

e Accept that the correlation is not guaranteed
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Surrogate Objectives

e Situation: you want to map raw data to meaningful categories/decisions

e But you don't have labels to learn that mapping directly

e Solution: optimize for something that you can learn/measure

e Should be something that correlates with your real goal

e Accept that the correlation is not guaranteed

e Example: business thinks it has distinct "categories" of customers
e How do you discover those categories from raw buying data?

e Maybe clustering: try to find groups of data that are distinct from each other
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K-Means Clustering




K-Means Clustering (overview)




K-Means Clustering (overview)

O
1. initialize 4 .
"centroids” C g
randomly in Yo O
data space =




1. Initialize
"centroids”
randomly In
data space
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K-Means Clustering (overview)

2. assign
each point to
nearest
centroid




1. Initialize
"centroids”
randomly In
data space

3. shift the
centroids to
be the mean

of their
points
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K-Means Clustering (overview)

2. assign
each point to
nearest
centroid
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1. Initialize
"centroids”
randomly In
data space

3. shift the
centroids to
be the mean

of their
points
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K-Means Clustering (overview)

2. assign
each point to
nearest
centroid

4. re-assign
points to
nearest

centroid, and

repeat
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K-Means Formally
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K-Means Formally

> ) x—pl P

e This process minimizes the Within-
Cluster Sum of Squares (right)
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K-Means Formally

e This process minimizes the Within-
Cluster Sum of Squares (right)

e |.e. minimize the total distance from T
points to centroids 05 | ;gi“:& +
O = -
e This is the surrogate objective i I
e Reasoning: points near each other *
. | + ot
are probably similar, and thus may PRt
N Frt +
be the same class 0
e This introduces inductive biases! °21
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Inductive Biases
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Inductive Biases
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Inductive Biases

> D) x—pl P

e [acitly assumes clusters are
spherical (equal direction variance)
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Inductive Biases

e [acitly assumes clusters are
spherical (equal direction variance)

® Assumes clusters are similar size
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Inductive Biases

e [acitly assumes clusters are
spherical (equal direction variance)

e Assumes clusters are similar size 8 I
. 0871 +%§§+§#+
e Big one: assumes you know the ..
number of clusters in advance! N R 5
+
e The "K" In K-Means ”
+J:|_++?L+++$}‘r
e Usually unlikely; but there are ways B
to select the optimal number 1
. Iteration #0
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K-Means Failure Cases

Non-optimal Number of Clusters Anisotropically Distributed Blobs
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K-Means Failure Cases

e Here are some common failure cases

Non-optimal Number of Clusters

-10.0 -75 =50 =25 0.0 2.5 5.0

Unequal Variance

-12.5 -100 -75 =50 =25 0.0 2.5

Anisotropically Distributed Blobs

Unevenly Sized Blobs

. t".. K
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K-Means Failure Cases

Non-optimal Number of Clusters

.,
e Non-optimal K (wrong number of i ‘-" W
clusters) | o

e Here are some common failure cases
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K-Means Failure Cases

Non-optimal Number of Clusters Anisotropically Distributed Blobs
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e Here are some common failure cases

e Non-optimal K (wrong number of
clusters)

e Elongated blobs (dimensions have
covariance effects)

Unequal Variance Unevenly Sized Blobs
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K-Means Failure Cases

Non-optimal Number of Clusters Anisotropically Distributed Blobs
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e Here are some common failure cases

e Non-optimal K (wrong number of
clusters)

e Elongated blobs (dimensions have
covariance effects)
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K-Means Failure Cases

Non-optimal Number of Clusters Anisotropically Distributed Blobs
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e Here are some common failure cases

e Non-optimal K (wrong number of
clusters)

e Elongated blobs (dimensions have
covariance effects)

Unequal Variance Unevenly Sized Blobs

e Unequal variance (clusters have

different spreads) i | '{é}

e Uneven size (different number of data | B
points) g
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e Here are some common failure cases

e Non-optimal K (wrong number of
clusters)

e Elongated blobs (dimensions have
covariance effects)

e Unequal variance (clusters have
different spreads)

e Uneven size (different number of data
points)

e All of these demonstrate inductive biases!

| | | |
o0 o IS N o N S o
1 1 1 1 1 1 1 1

K-Means Failure Cases

Non-optimal Number of Clusters

Anisotropically Distributed Blobs

Unequal Variance

Unevenly Sized Blobs

I

-12.5 -100 -75 =50 =25 0.0 2.5

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0
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"Mouse" Dataset

Different cluster analysis results on "mouse" data set:
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Evaluating Clusters

. b(i) — a(i)
s(l) = ———————
max(a(i), b(1))
—_ Ck
a=avg y AV
. 4 .
C b=min
avg
CJ
S(x)=1-a/b
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Evaluating Clusters

e How do we know how "good" the clusters b(i) — a(i)
are? Another surrogate metric! (i) = ————
max(a(i), b(i))
a=aVvg Ck
X, avg
© b=min
avg
C

S(x)=1-a/b
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Evaluating Clusters

e How do we know how "good" the clusters b(i) — a(i)
are? Another surrogate metric! s(l)) = ————
max(a(i), b(i))

e Common method uses the Silhouette
Score (right) C,

a=avg
e a(i): average distance to other points in X,

the same cluster o

avg

e b(i): average distance to points in the | b=min
nearest other cluster avg

e Range: [—1,1] (higher is better) C
Sx)=1-a/b

[@6)] 0
&y UNIVERSITY* ROCHESTER 'I 3




Evaluating Clusters

e How do we know how "good" the clusters b(i) — a(i)
are? Another surrogate metric! s(l)) = ————
max(a(i), b(i))

e Common method uses the Silhouette
Score (right) C,

a=avg
e a(i): average distance to other points in X,

the same cluster o

avg

e b(i): average distance to points in the | b=min
nearest other cluster avg

e Range: [—1,1] (higher is better) C

e How well-separated are the clusters? S(x)=1-a/b
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Evaluating Clusters

. b(i) — a(i)
s(l) = ———————
max(a(i), b(1))
—_ Ck
a=avg y AV
. 4 .
C b=min
avg
CJ
S(x)=1-a/b
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Evaluating Clusters

e Can use Silhouette to determine the b(i) — a(i)
timal f clust S(1) = ——————
optimal number of clusters max(a(i), b(i))
a=avg ©
X, avg
) .
C b=min
avg
CJ
S(x)=1-a/b
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Evaluating Clusters

e Can use Silhouette to determine the b(i) — a(i)
optimal number of clusters $()) = —————
P max(a(i), b(i))
e Run K-Means for K = 2,3 4...
—_ Ck
e Computer Silhouette score for each 4=avy X avg
A .
e Chose K with the highest score .
C b=min
avg

S(x)=1-a/b

EE UNIVERSITY» ROCHESTER 14
\ O/




Evaluating Clusters

e Can use Silhouette to determine the b(i) — a(i)
optimal number of clusters s(1) = m

e Run K-Means for K = 2,3 4...

e Computer Silhouette score for each 4=avy X avg

e Chose K with the highest score .

. . b=min
e Caveat: still no guarantee this

matches the "ground truth”

avg

S(x)=1-a/b

EE UNIVERSITY» ROCHESTER 14
\ O/




Evaluating Clusters

e Can use Silhouette to determine the b(i) — a(i)
optimal number of clusters s(1) = m

e Run K-Means for K = 2,3 4...

e Computer Silhouette score for each 4=avy X avg

e Chose K with the highest score .

. . b=min
e Caveat: still no guarantee this

matches the "ground truth”

avg

e Still a surrogate measure! S(x)=1-a/b
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Other Clustering Techniques
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Gaussian Mixture Models

e Models data points as generated by
multiple Guassian (Normal)
Distributions

e Adds a probabilistic interpretation
(what's the probability this data point
comes from this cluster?)

e Each cluster has its own variance
(addresses differing spread)

e Also handles elliptical clusters (with
dimension co-variance)
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Hierarchical Clustering

e Iteratively merges datapoints to
address hierarchical structure

e Don't need to know K in advance!

e Can be visualized as a
"dendrogram"” (tree structure)

e (Good for data exploration

e Con: might imply more structure
than there is
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Sequence Segmentation
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Morpheme Segmentation

Inuktitut:
"pusikaarjuakulugaqtuna”

English: "l have a big cat”

Pleces: pusikaa - jua - kulu -
gaq - tuna
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Morpheme Segmentation

e Problem in NLP/Linguistics

Inuktitut:
"pusikaarjuakulugaqtuna”

English: "l have a big cat”

Pleces: pusikaa - jua - kulu -
gaq - tuna
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Morpheme Segmentation

e Problem in NLP/Linguistics

e Many languages have complex
structure within words

e [raditional techniques just split into
words

e How do we discover this structure?

Inuktitut:
"pusikaarjuakulugaqtuna”

English: "l have a big cat”

Pleces: pusikaa - jua - kulu -
gaq - tuna



Morpheme Segmentation

e Problem in NLP/Linguistics

e Many languages have complex Inuktitut:
structure within words "pusikaarjuakulugaqtuna”
e [raditional techniques just split into
words English: "l have a big cat”
e How do we discover this structure?
e Supervised data is very rare Pleces: pusikaa - jua - Kulu -
e Usually don't bother to make it unless gaq - tuna

you're doing NLP/ML



Minimal Description Length (MDL)

e MDL.: try to jointly minimize the
"cost" of the data and the
"description”

e Intuitively: try to "compress” the
system to its most efficient form

e MDL tradeoff:

e Undersegmentation: data is
compressed but codebook is large

e Oversegmentation: codebook is
compressed but data is large

C

Cost(Source text) + Cost(Codebook)

Z — log p(m;) Z k*l(m;)

tokens

types

m. . a morpheme
[(m;) : its length

—logp(m,) : its
negative log
probability
(frequency)
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Hierarchical Counting
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