Distributions, Populations, and Samples

Ling250/450: Data Science for Linguistics
C.M. Downey
Spring 2025

- We often want to know the probability of a specific outcome
 - E.g. how likely is it to get heads on a coin flip? To get a 6 on a die roll? That the Bills will win the Superbowl next year?

- We often want to know the probability of a specific outcome
 - E.g. how likely is it to get heads on a coin flip? To get a 6 on a die roll? That the Bills will win the Superbowl next year?
- We model this with a random variable, representing possible outcomes
 - ullet Example: X is the result of rolling a die
 - X=1 means the rolled number is 1; X=2 means rolling a 2; etc.
 - P(X = 1) is the probability that we roll a 1 (1/6 chance)

- We often want to know the probability of a specific outcome
 - E.g. how likely is it to get heads on a coin flip? To get a 6 on a die roll? That the Bills will win the Superbowl next year?
- We model this with a random variable, representing possible outcomes
 - ullet Example: X is the result of rolling a die
 - X=1 means the rolled number is 1; X=2 means rolling a 2; etc.
 - P(X = 1) is the probability that we roll a 1 (1/6 chance)
- If the sum of probabilities equals 1, this defines a probability distribution

Probability distributions

- A probability distribution expresses the likelihood of all possible outcomes, which must add up to 1 (conceptually the same as 100%)
- Can often be expressed in a table (if the variable is discrete)

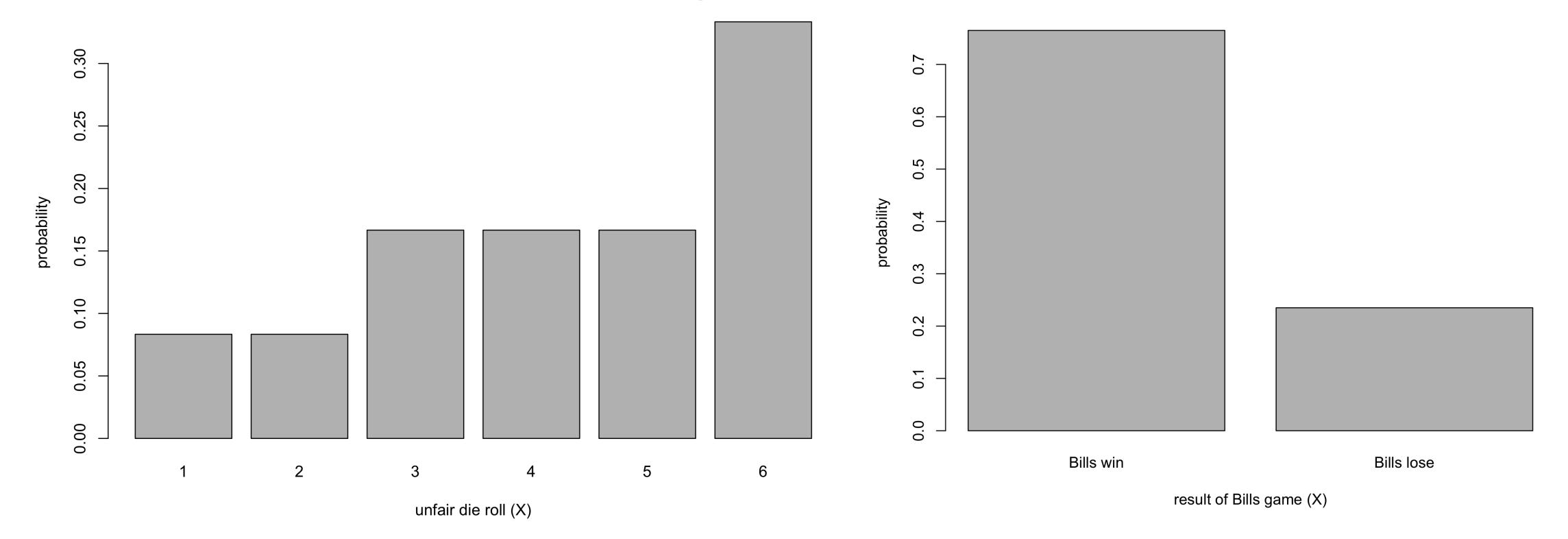
Outcome	Probability
X = 1	1/6
X = 2	1/6
X = 3	1/6
X = 4	1/6
X = 5	1/6
X = 6	1/6

Outcome	Probability
X = heads	1/2
X = tails	1/2

Outcome	Probability
X = Bills win	0.765
X = Bills lose	0.235

Visualizing distributions

- Discrete distributions can also be visualized as a bar plot
- This is often called a Probability Mass Function



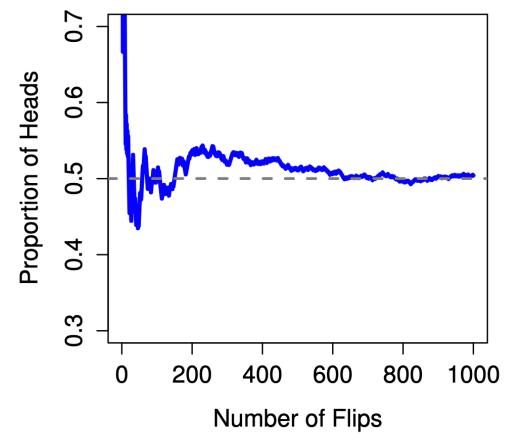
What is a probability anyway?

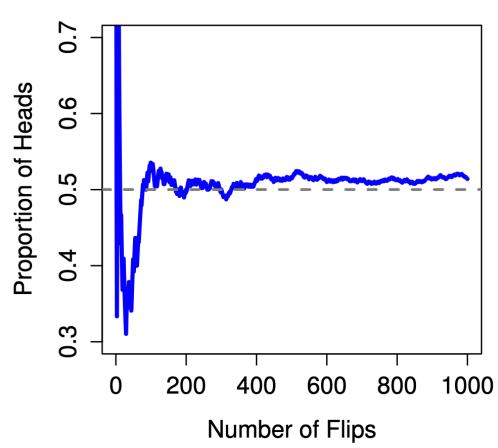
What is a probability anyway?

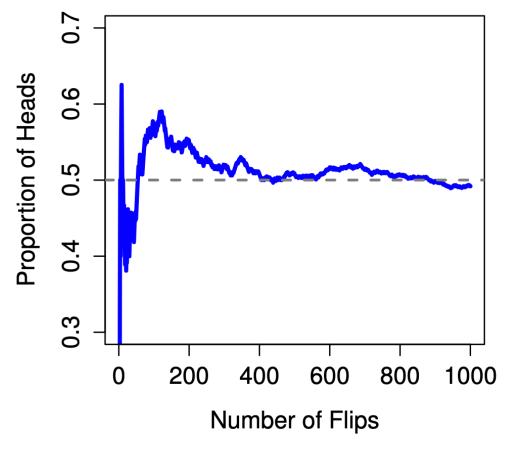
- What do we mean when we say "the probability of flipping heads is 0.5"?
 - This is more complex than we often give it credit for
 - Maybe something like "we expect both outcomes to be equally likely"

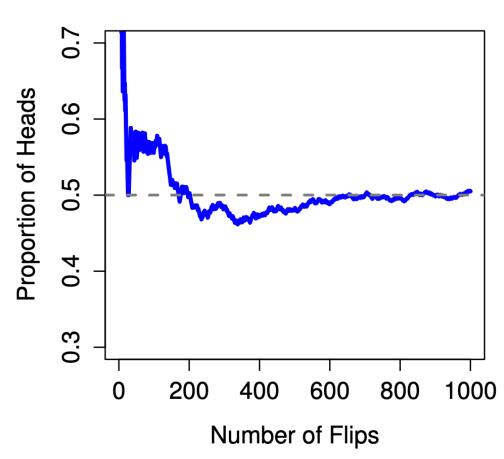
What is a probability anyway?

- What do we mean when we say "the probability of flipping heads is 0.5"?
 - This is more complex than we often give it credit for
 - Maybe something like "we expect both outcomes to be equally likely"
- Frequentist perspective: it is the overall frequency of an outcome when the experiment is repeated many times
 - Example: simulating many coin flips









 Two events are considered independent if neither outcome influences the other (oversimplification)

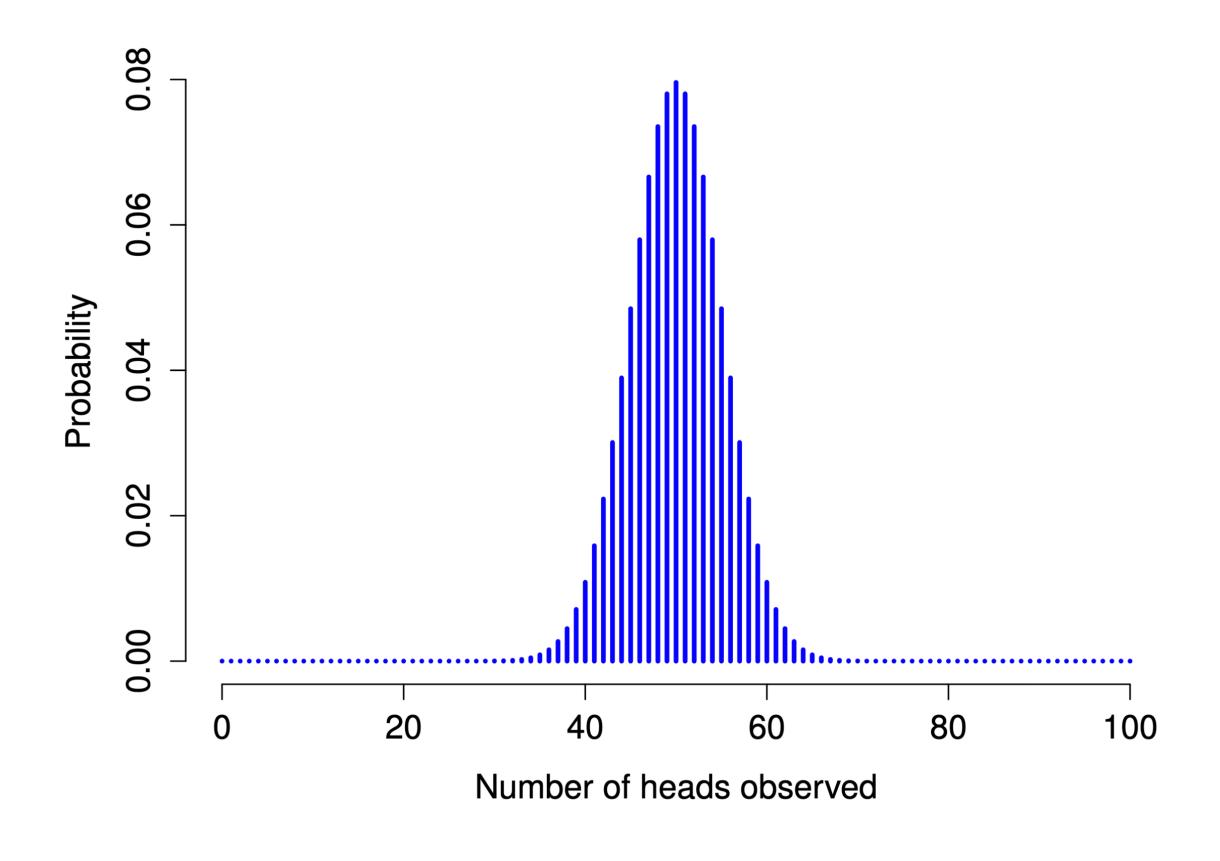
- Two events are considered independent if neither outcome influences the other (oversimplification)
- IF two events are independent, their joint probability is $P(X = x) \cdot P(Y = y)$
 - Example: the probability of getting heads, then heads again is $0.5 \cdot 0.5 = 0.25$
 - This is because we typically assume coin-flips are independent

- Two events are considered independent if neither outcome influences the other (oversimplification)
- IF two events are independent, their joint probability is $P(X = x) \cdot P(Y = y)$
 - Example: the probability of getting heads, then heads again is $0.5 \cdot 0.5 = 0.25$
 - This is because we typically assume coin-flips are independent
- Is the result of the Bills' second game independent of their first?
 - NO! This is a bad assumption for many reasons (e.g. injuries, morale)

Important distributions

Binomial Distribution

- Distribution of number of
 "successful" outcomes in a set of repeated experiments
- Example: if we flip a coin 100 times,
 how many heads should we expect?
- "Success" just means one of two
 possible outcomes (e.g. heads vs.
 tails; win vs. lose; pass vs. fail)



A Binomial Distribution is defined by several parameters

$$X \sim \text{Binomial}(\theta, N)$$

- A Binomial Distribution is defined by several parameters
 - Size / Number of trials (N): the number of times we repeat the event

- A Binomial Distribution is defined by several parameters
 - Size / Number of trials (N): the number of times we repeat the event
 - Success probability (θ): the overall frequency of whatever we define "success" to be (e.g. heads probability; win probability)

- A Binomial Distribution is defined by several parameters
 - Size / Number of trials (N): the number of times we repeat the event
 - Success probability (θ): the overall frequency of whatever we define "success" to be (e.g. heads probability; win probability)
 - Random variable (X): the variable representing the overall number of successes

- A Binomial Distribution is defined by several parameters
 - Size / Number of trials (N): the number of times we repeat the event
 - Success probability (θ): the overall frequency of whatever we define "success" to be (e.g. heads probability; win probability)
 - ullet Random variable (X): the variable representing the overall number of successes
- ullet The following can be read "X is distributed according to the Binomial Distribution with success rate θ and N total trials"

$$X \sim \text{Binomial}(\theta, N)$$

$$P(X) = \frac{N!}{X!(N-X)!} \theta^{X} (1-\theta)^{(N-X)}$$
Ignore this part for now!

P(X): probability of getting X heads over all trials

$$P(X) = \frac{N!}{X!(N-X)!} \theta^{X} (1-\theta)^{(N-X)}$$
Ignore this part for now!

- P(X): probability of getting X heads over all trials
- ullet θ : probability of getting a single heads

$$P(X) = \frac{N!}{X!(N-X)!} \theta^{X} (1-\theta)^{(N-X)}$$
Ignore this part for now!

- P(X): probability of getting X heads over all trials
- ullet θ : probability of getting a single heads
- (1θ) : probability of **not** getting heads (getting tails)

$$P(X) = \frac{N!}{X!(N-X)!} \theta^{X} (1-\theta)^{(N-X)}$$
Ignore this part for now!

- P(X): probability of getting X heads over all trials
- ullet θ : probability of getting a single heads
- (1θ) : probability of **not** getting heads (getting tails)
- ullet θ^X : probability of getting heads X times total

$$P(X) = \frac{N!}{X!(N-X)!} \theta^{X} (1-\theta)^{(N-X)}$$
Ignore this part for now!

- P(X): probability of getting X heads over all trials
- ullet θ : probability of getting a single heads
- (1θ) : probability of **not** getting heads (getting tails)
- ullet θ^X : probability of getting heads X times total
- $(1-\theta)^{(N-X)}$: probability of getting tails the other (N-X) times

$$P(X) = \frac{N!}{X!(N-X)!} \theta^{X} (1-\theta)^{(N-X)}$$
Ignore this part for now!

$$P(X) = \frac{N!}{X!(N-X)!} \theta^X (1-\theta)^{(N-X)}$$

- What is this part I told you to ignore at first?
 - Called the Binomial Coefficient

$$P(X) = \frac{N!}{X!(N-X)!} \theta^X (1-\theta)^{(N-X)}$$

- What is this part I told you to ignore at first?
 - Called the Binomial Coefficient
- $\theta^X(1-\theta)^{(N-X)}$ gives the probability for a **specific** sequence of X heads and N-X tails
 - Ex: the sequence [H, T, T, H] has probability $\theta^2(1-\theta)^2$
 - [T, T, H, H] has the exact same probability

$$P(X) = \frac{N!}{X!(N-X)!} \theta^X (1-\theta)^{(N-X)}$$

- What is this part I told you to ignore at first?
 - Called the Binomial Coefficient
- $\theta^X(1-\theta)^{(N-X)}$ gives the probability for a **specific** sequence of X heads and N-X tails
 - Ex: the sequence [H, T, T, H] has probability $\theta^2(1-\theta)^2$
 - [T, T, H, H] has the exact same probability
- Binomial Coefficient gives the number of distinct ways to get X heads and (N – X) tails

$$P(X) = \frac{N!}{X!(N-X)!} \theta^X (1-\theta)^{(N-X)}$$

• I'm showing the Binomial formula because it's relatively intuitive

- I'm showing the Binomial formula because it's relatively intuitive
- It is generally not important to remember the formula
 - It is especially not important to remember the formula for the Binomial Coefficient! Don't worry about it!

- I'm showing the Binomial formula because it's relatively intuitive
- It is generally not important to remember the formula
 - It is especially not important to remember the formula for the Binomial Coefficient! Don't worry about it!
- More important: remember what the parts of the equation mean!

On equations

- I'm showing the Binomial formula because it's relatively intuitive
- It is generally not important to remember the formula
 - It is especially not important to remember the formula for the Binomial Coefficient! Don't worry about it!
- More important: remember what the parts of the equation mean!
- Understanding the gist of it is more important than memorizing

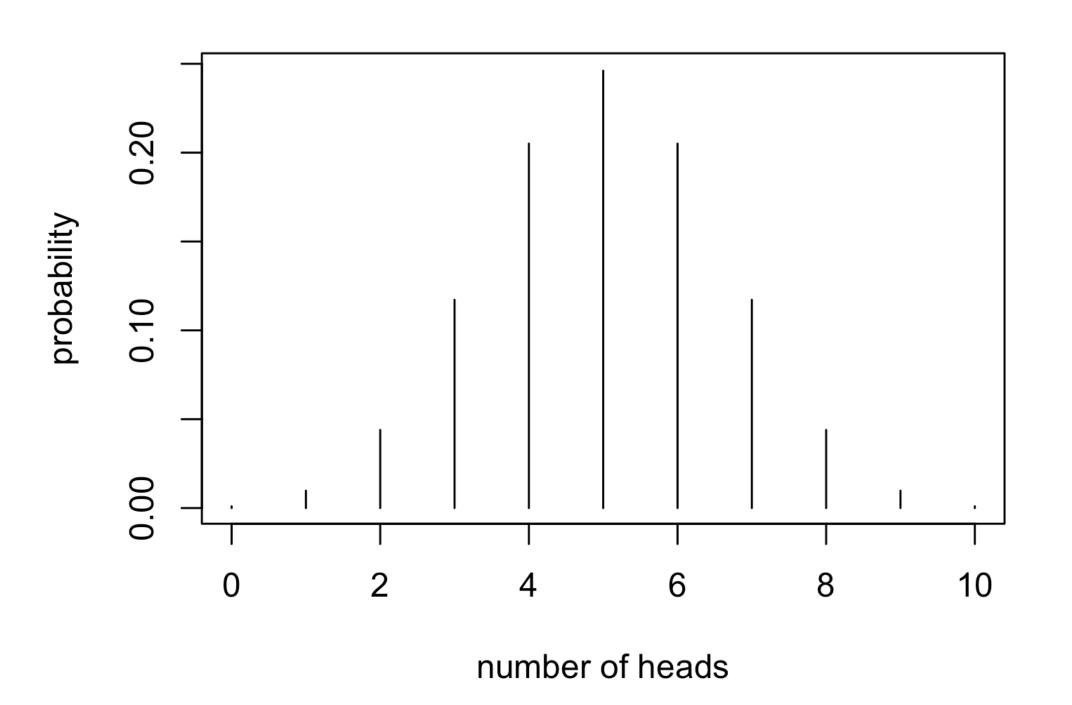
 Specific probabilities from the binomial distribution can be found with the command dbinom()

- Specific probabilities from the binomial distribution can be found with the command dbinom()
- Syntax: dbinom(x=, size=, prob=)
 - x: the outcome value for which you want the probability (e.g. number of heads)
 - size: the total number of trials (N)
 - prob: the individual probability of "success" (θ)

- Specific probabilities from the binomial distribution can be found with the command dbinom()
- Syntax: dbinom(x=, size=, prob=)
 - x: the outcome value for which you want the probability (e.g. number of heads)
 - size: the total number of trials (N)
 - \bullet prob: the individual probability of "success" (θ)
- Probability that we get 50 heads out of 100 flips of a fair coin:

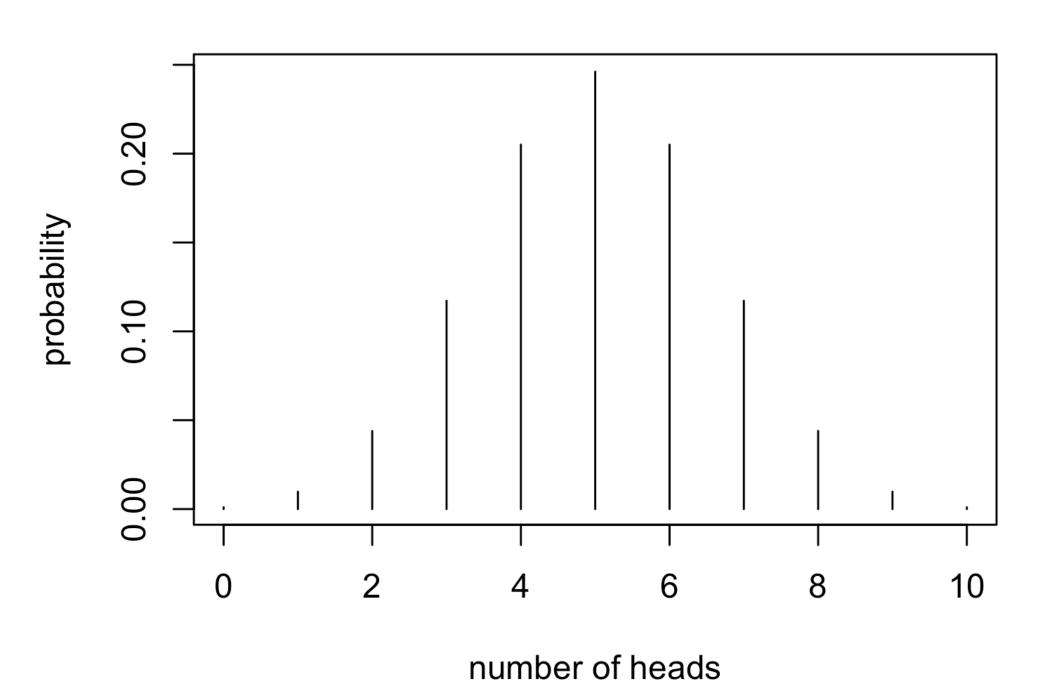
```
> dbinom(x=50, size=100, prob=0.5)
[1] 0.07958924
```

```
> ten_binom = dbinom(x=c(0:10), size=10, prob=0.5)
> ten_binom
[1] 0.0009765625 0.0097656250 0.0439453125 0.1171875000
[5] 0.2050781250 0.2460937500 0.2050781250 0.1171875000
[9] 0.0439453125 0.0097656250 0.0009765625
> plot(x=c(0:10), y=ten_binom, type='h', xlab="number of heads", ylab="probability")
```



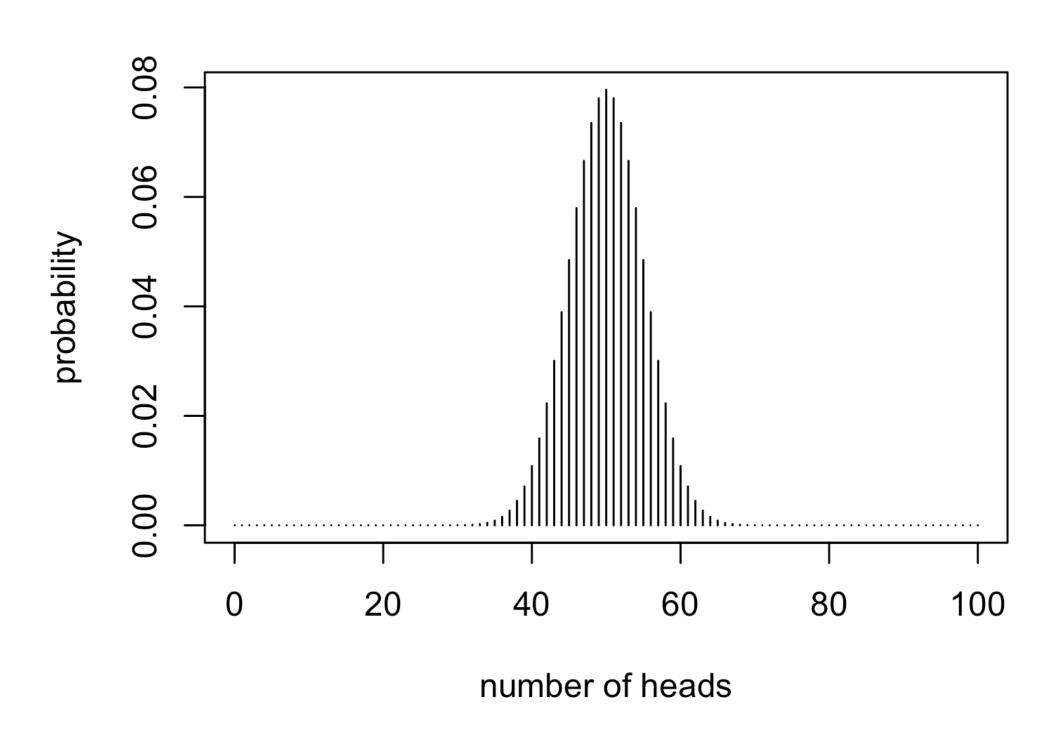
- If you provide a vector as the argument for x, you will get a vector out
 - I.e. the probability for **each** of the input values

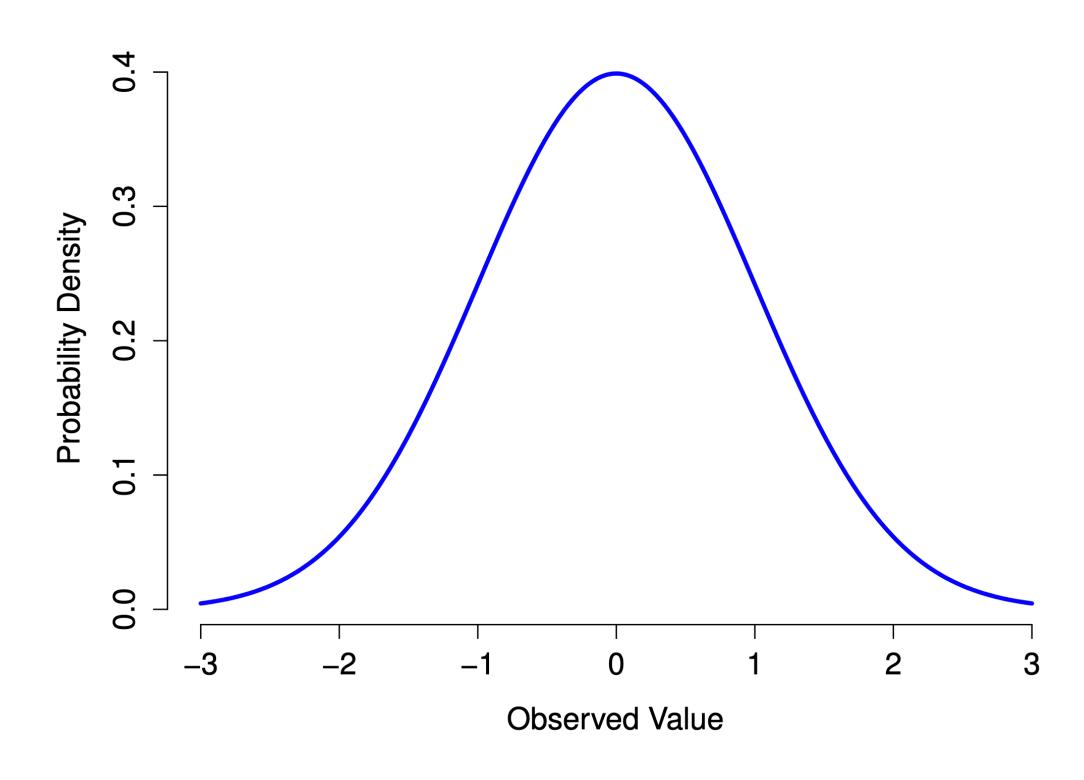
```
> ten_binom = dbinom(x=c(0:10), size=10, prob=0.5)
> ten_binom
[1] 0.0009765625 0.0097656250 0.0439453125 0.1171875000
[5] 0.2050781250 0.2460937500 0.2050781250 0.1171875000
[9] 0.0439453125 0.0097656250 0.0009765625
> plot(x=c(0:10), y=ten_binom, type='h', xlab="number of heads", ylab="probability")
```



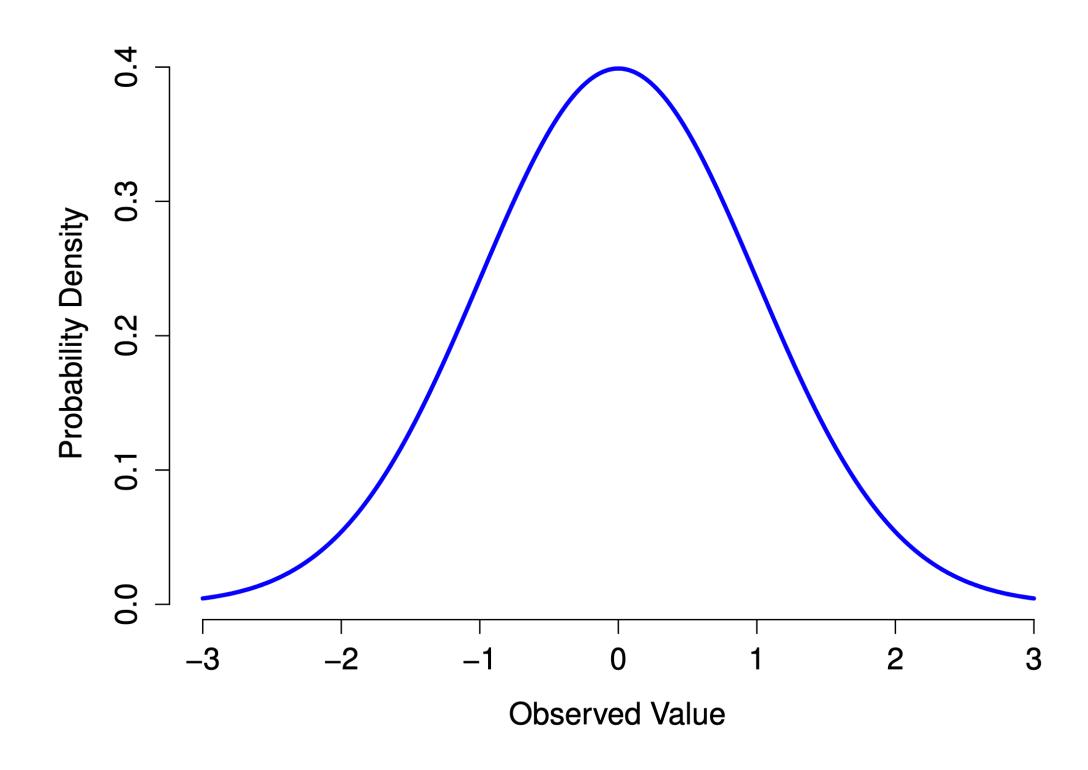
- If you provide a vector as the argument for x, you will get a vector out
 - I.e. the probability for **each** of the input values
- This is the easiest way to plot a distribution in R
 - (There are better-looking ways though)

> hundred_binom = dbinom(x=c(0:100), size=100, prob=0.5)
> plot(x=c(0:100), y=hundred_binom, type='h', xlab="number of head
s", ylab="probability")

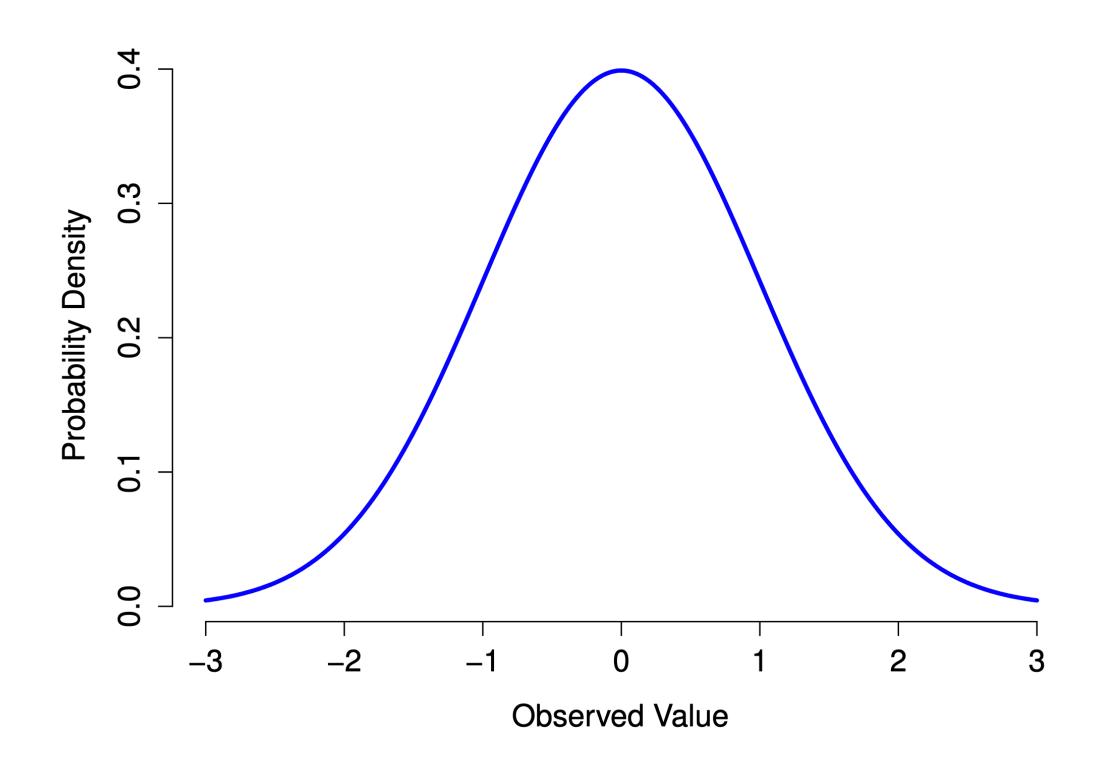




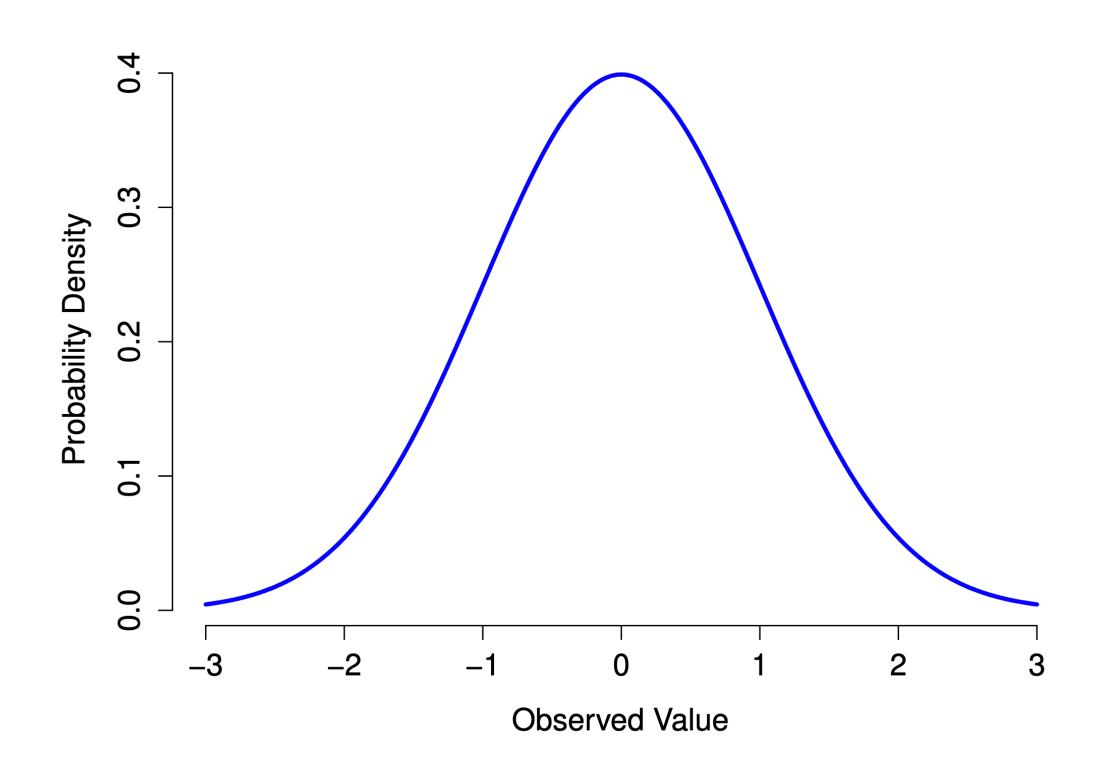
 The Normal Distribution is the most important distribution in statistics



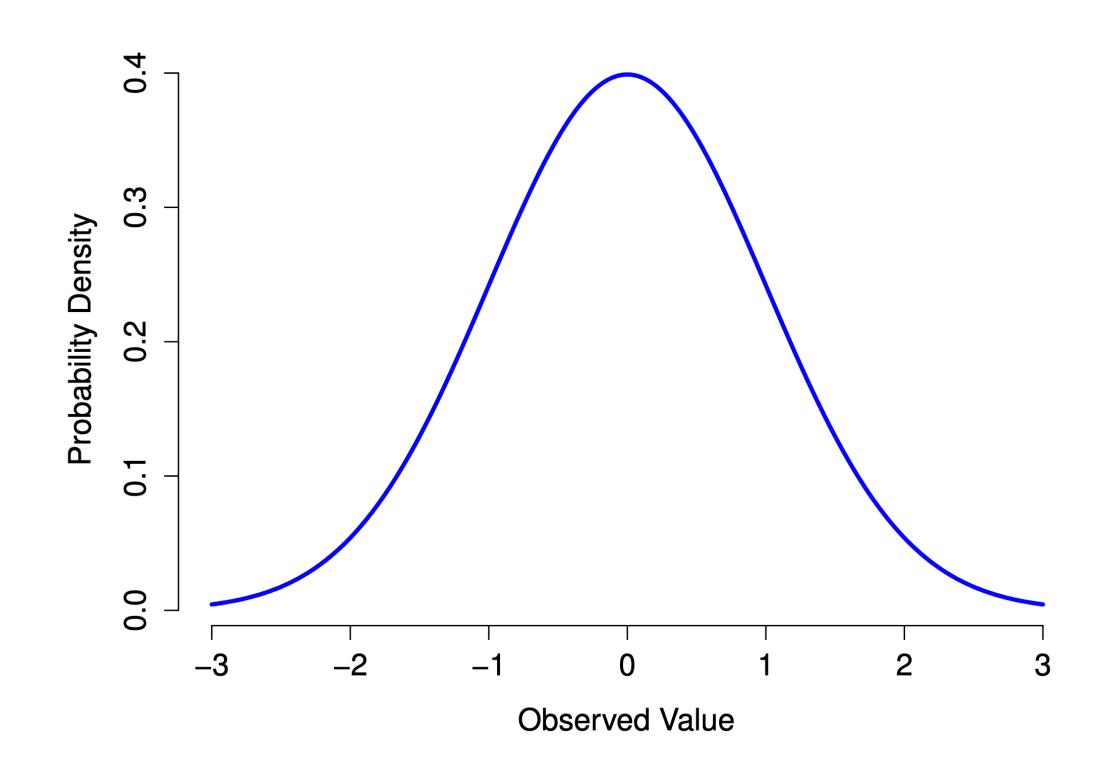
- The Normal Distribution is the most important distribution in statistics
- Not the easiest to understand though
 - Showing you the equation would probably confuse you

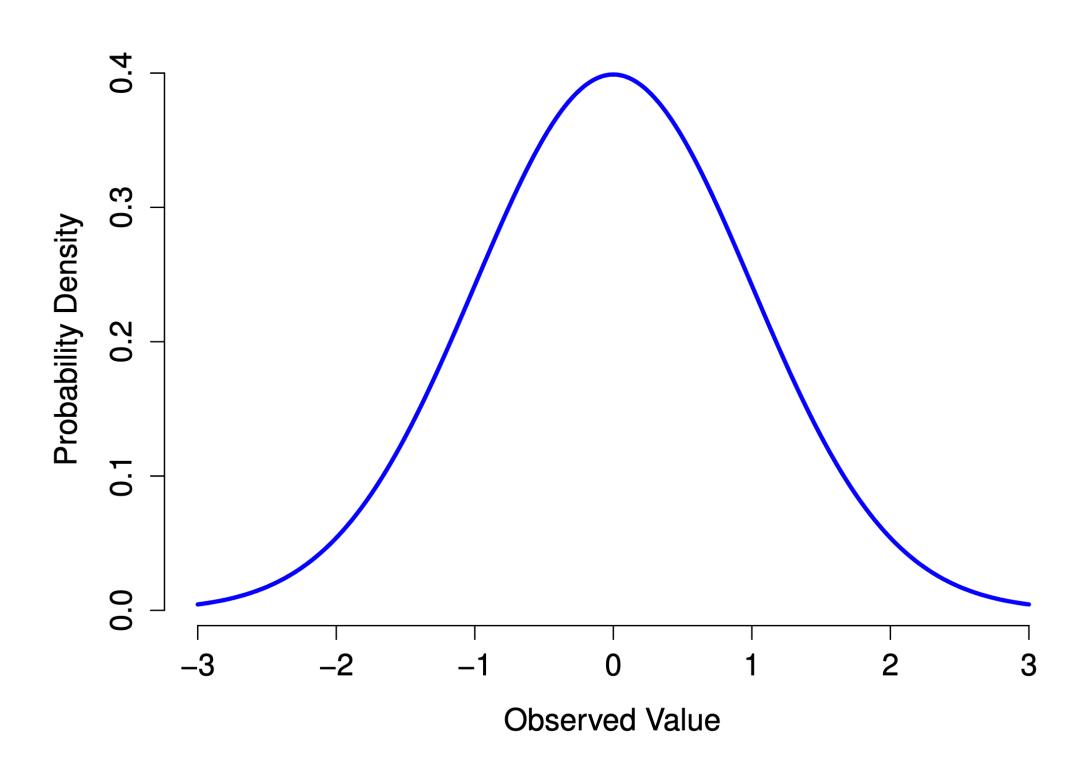


- The Normal Distribution is the most important distribution in statistics
- Not the easiest to understand though
 - Showing you the equation would probably confuse you
- Also called the "Gaussian
 Distribution" or "bell curve"

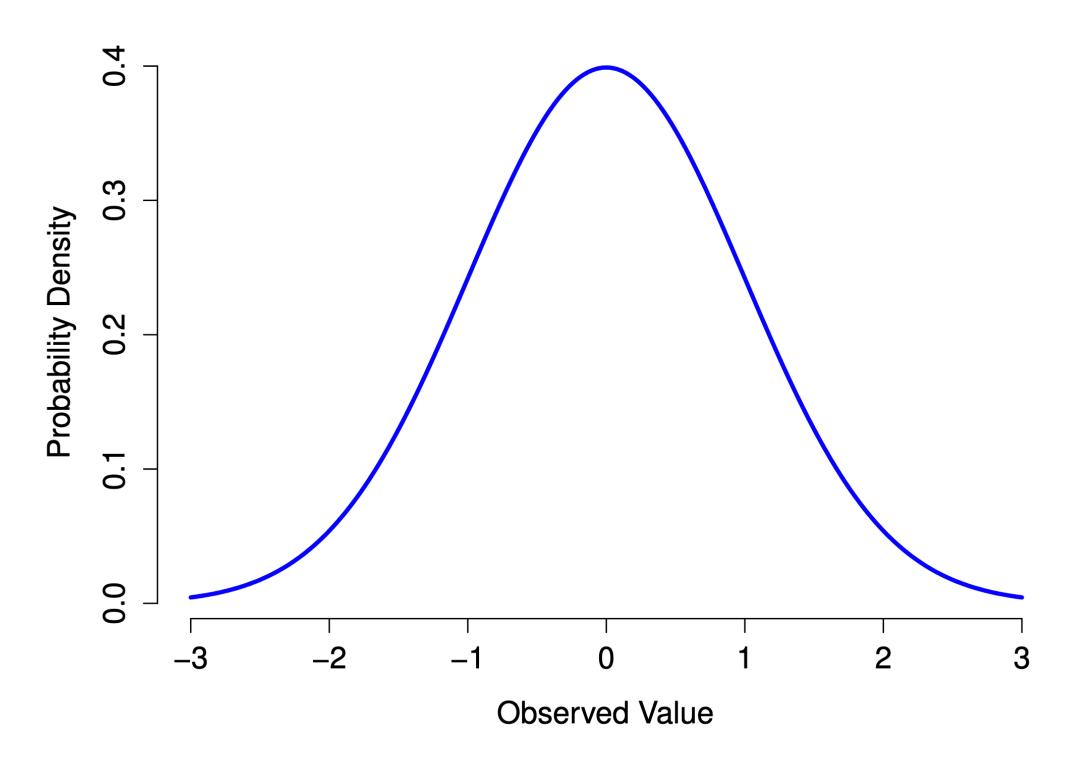


- The Normal Distribution is the most important distribution in statistics
- Not the easiest to understand though
 - Showing you the equation would probably confuse you
- Also called the "Gaussian
 Distribution" or "bell curve"
- Has important math properties, and occurs in nature

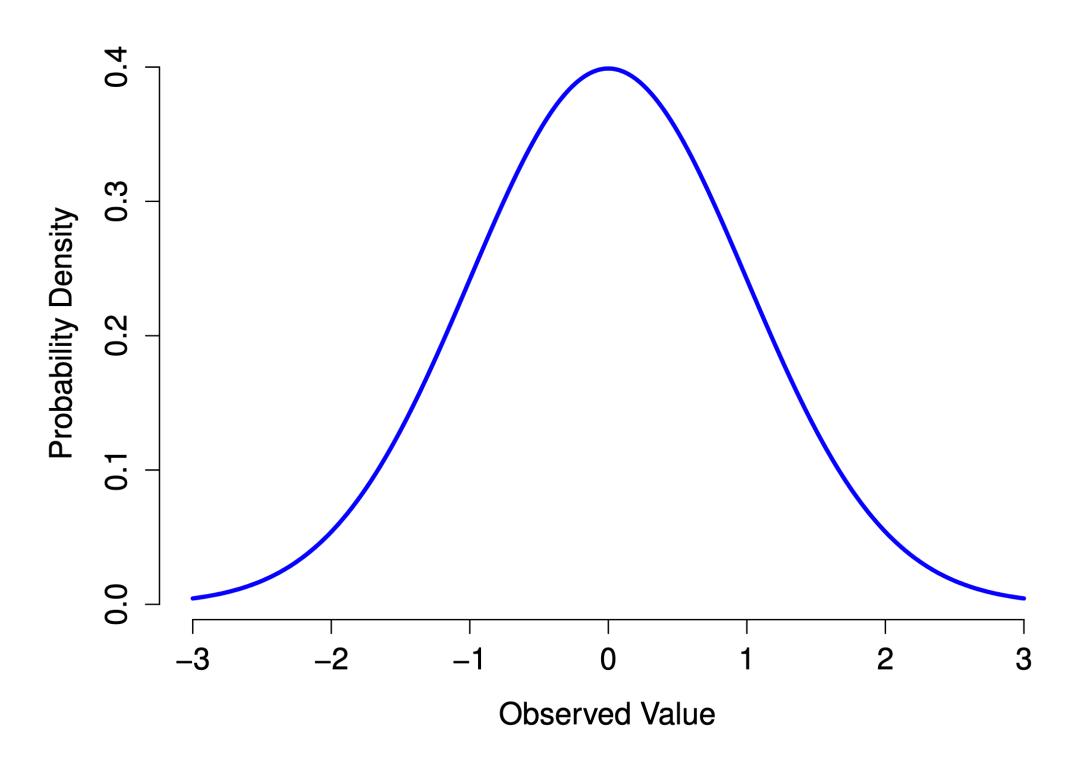




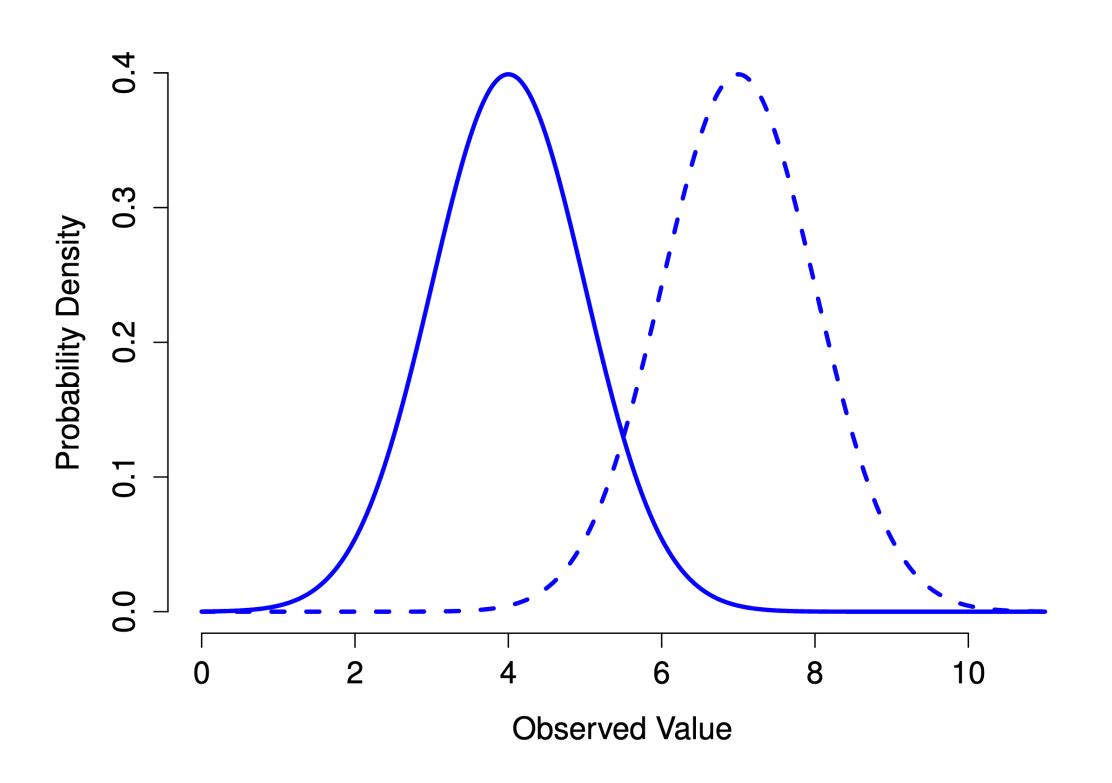
• Parameterized by its **mean** (μ) and **standard** deviation (σ)



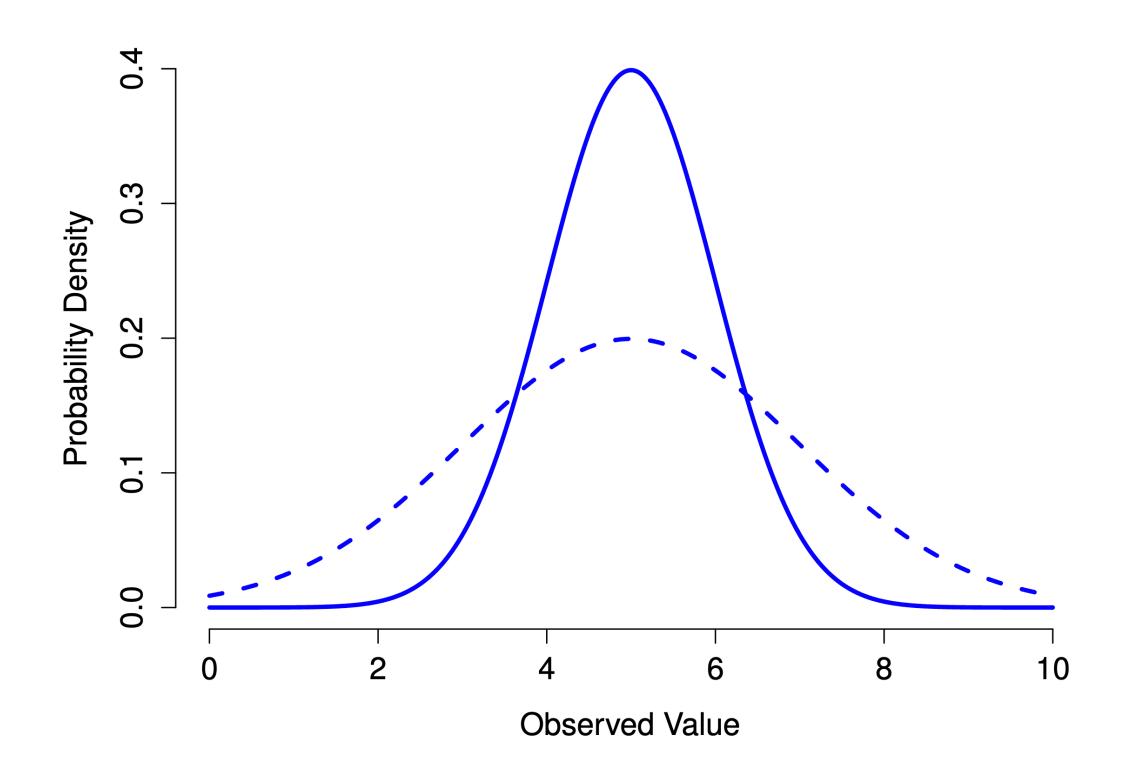
- Parameterized by its **mean** (μ) and **standard** deviation (σ)
 - Notated $X \sim \text{Normal}(\mu, \sigma)$



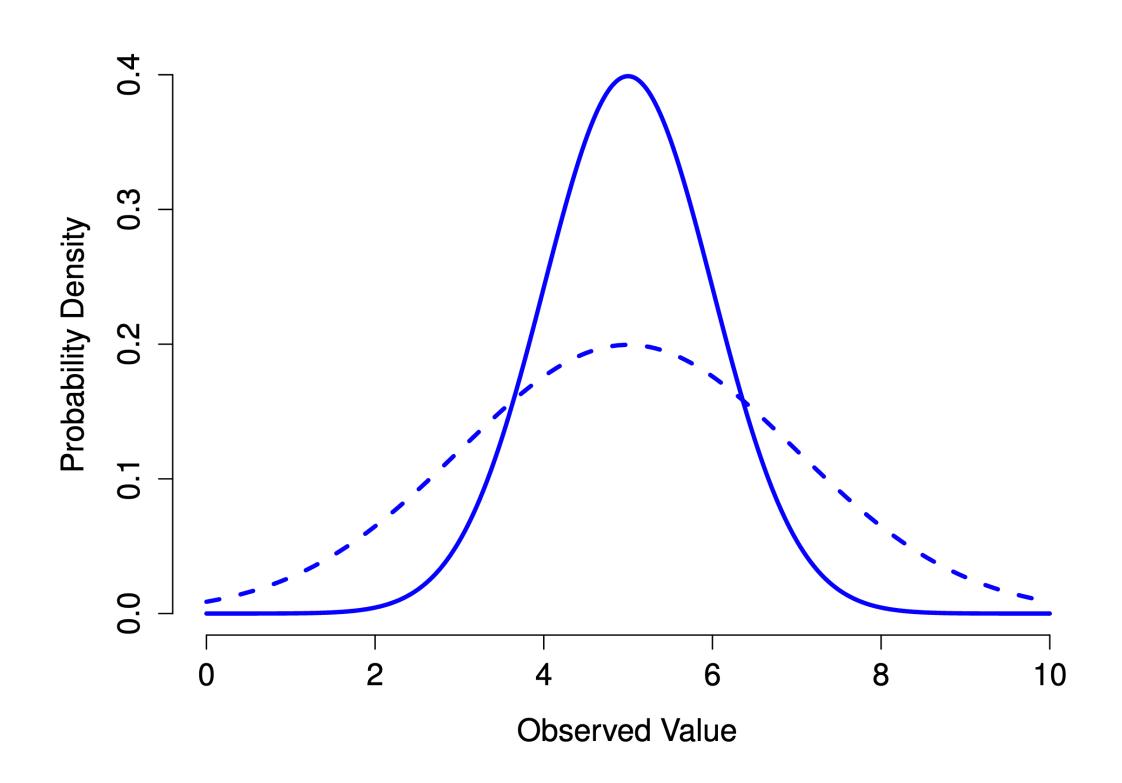
- Parameterized by its **mean** (μ) and **standard** deviation (σ)
 - Notated $X \sim \text{Normal}(\mu, \sigma)$
 - Different μ shifts the curve left/right



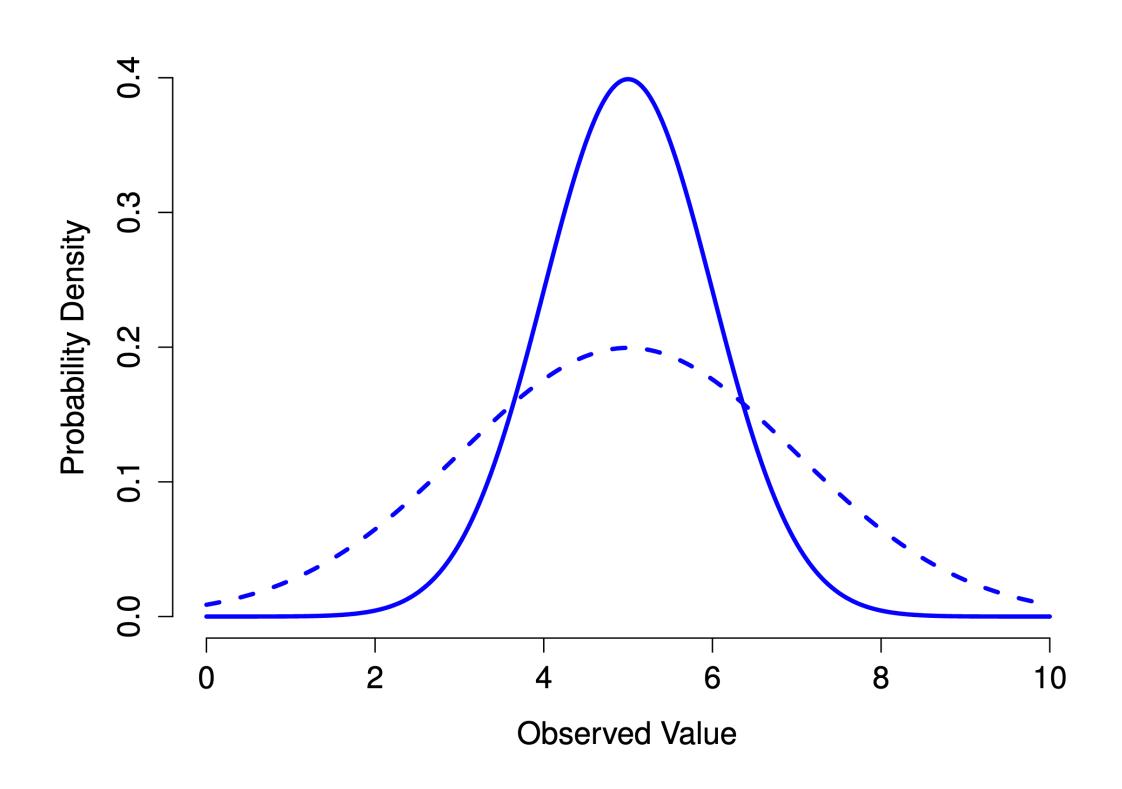
- Parameterized by its **mean** (μ) and **standard** deviation (σ)
 - Notated $X \sim \text{Normal}(\mu, \sigma)$
 - Different μ shifts the curve left/right
 - \bullet Higher σ "flattens" the curve



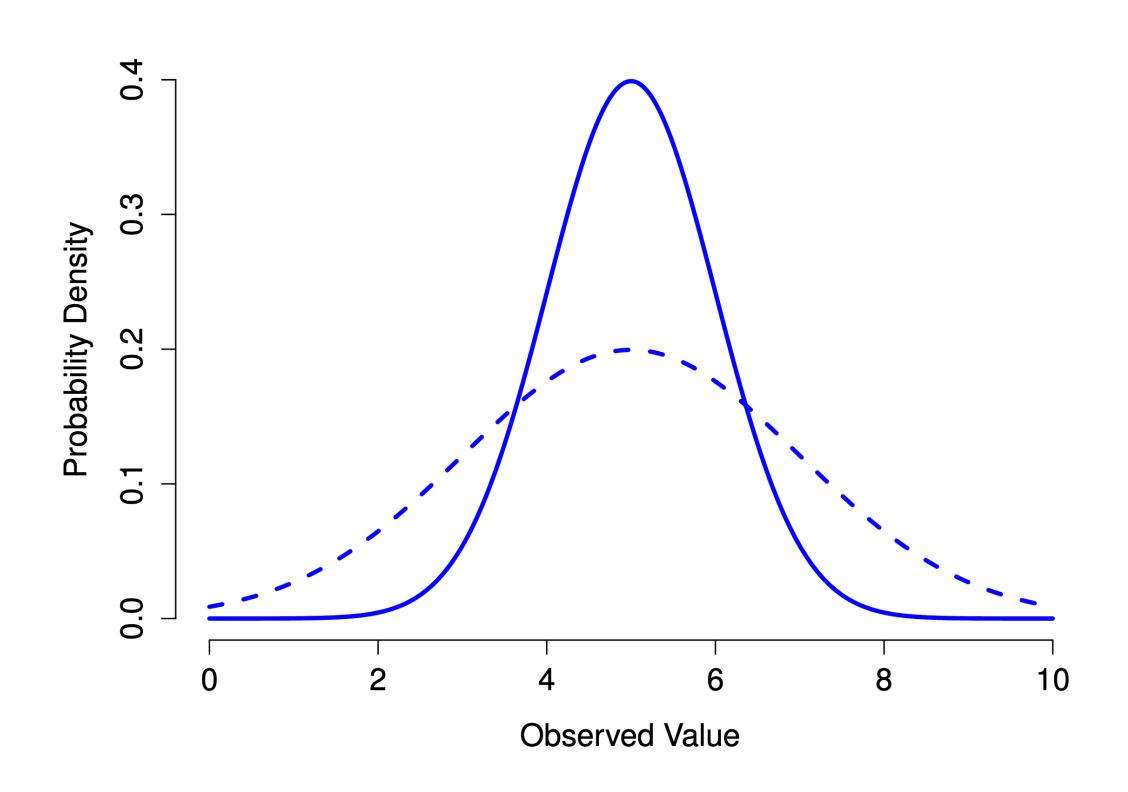
- Parameterized by its **mean** (μ) and **standard** deviation (σ)
 - Notated $X \sim \text{Normal}(\mu, \sigma)$
 - Different μ shifts the curve left/right
 - \bullet Higher σ "flattens" the curve
- Unlike the Binomial, the Normal is a continuous distribution



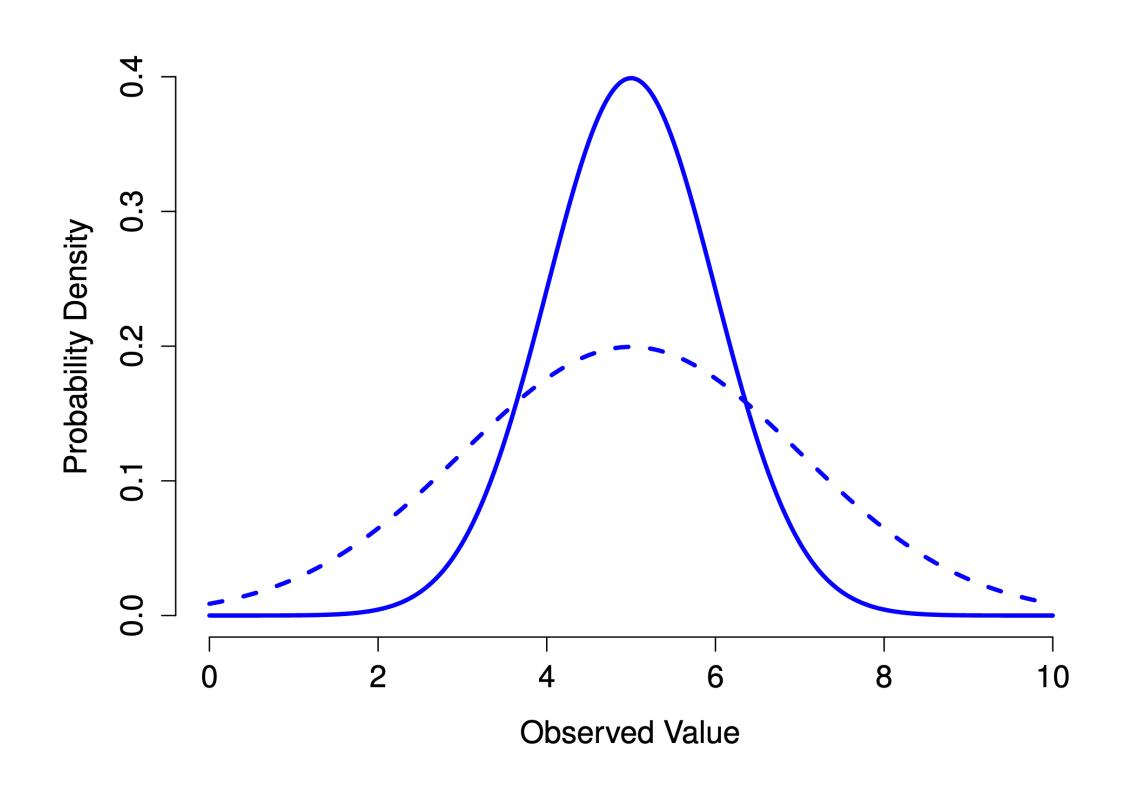
- Parameterized by its **mean** (μ) and **standard** deviation (σ)
 - Notated $X \sim \text{Normal}(\mu, \sigma)$
 - Different μ shifts the curve left/right
 - ullet Higher σ "flattens" the curve
- Unlike the Binomial, the Normal is a continuous distribution
 - ullet X can take on any real value



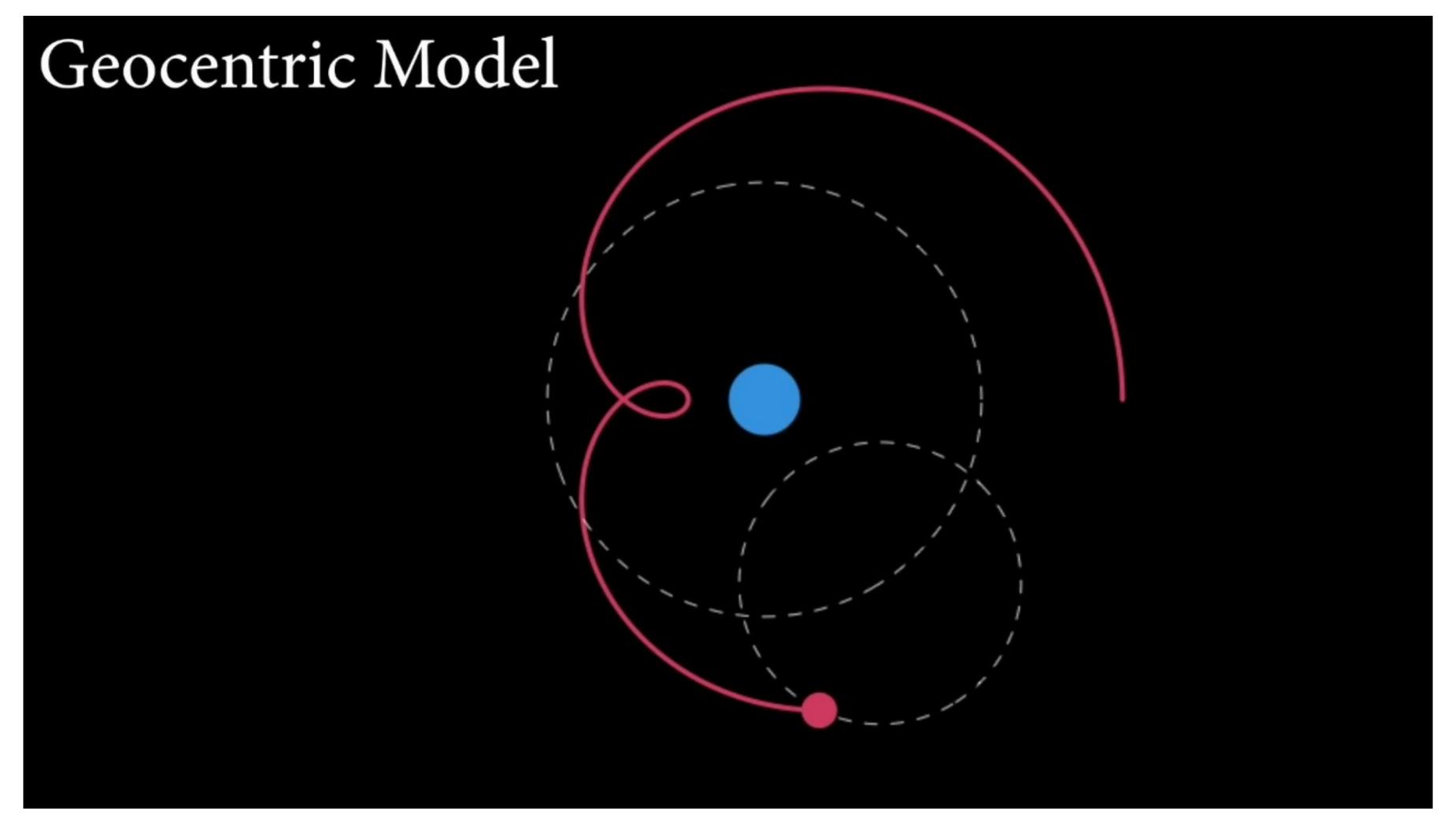
- Parameterized by its **mean** (μ) and **standard** deviation (σ)
 - Notated $X \sim \text{Normal}(\mu, \sigma)$
 - Different μ shifts the curve left/right
 - \bullet Higher σ "flattens" the curve
- Unlike the Binomial, the Normal is a continuous distribution
 - ullet X can take on any real value
 - The y-axis is not actually probability, but probability density



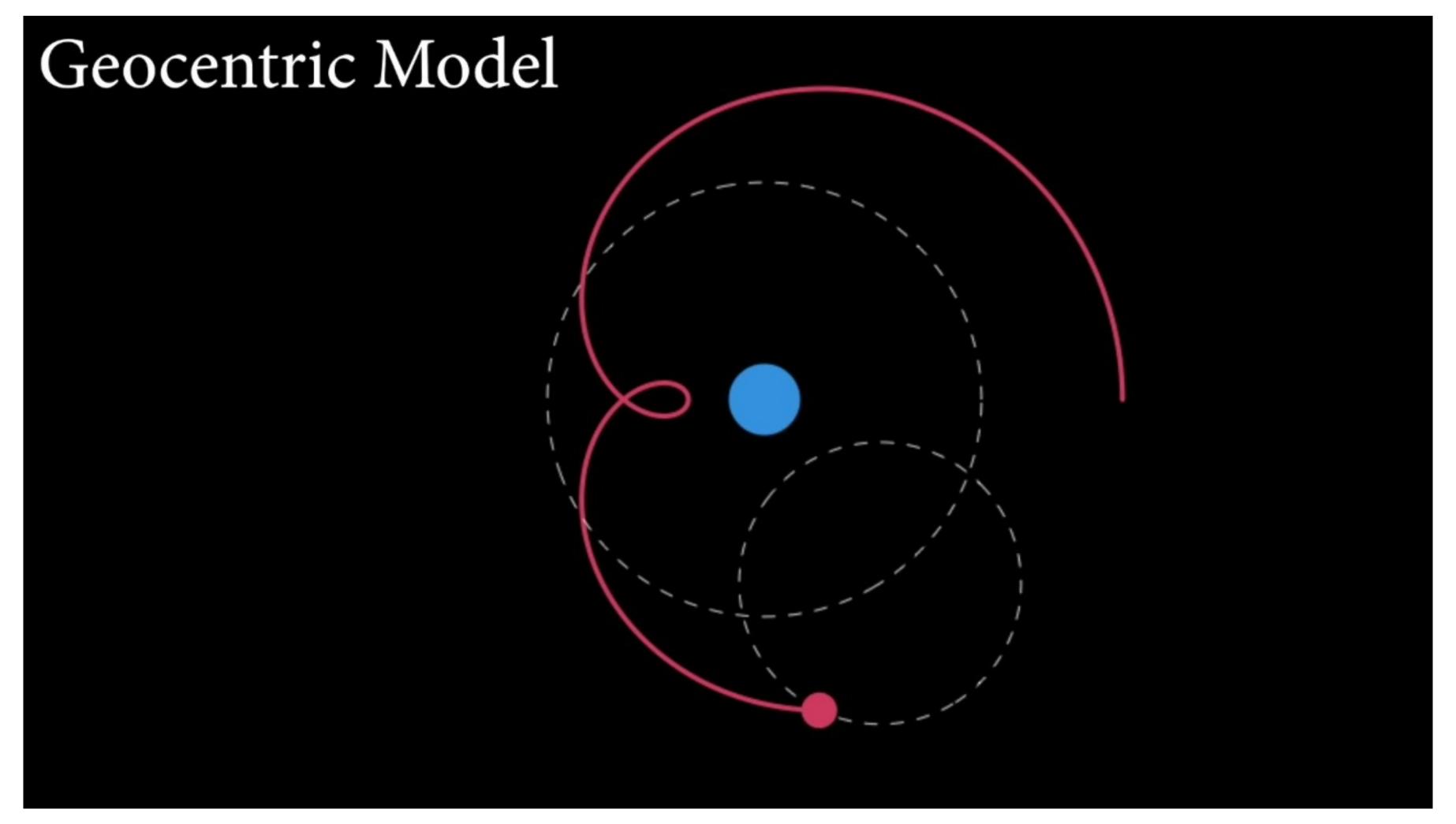
- Parameterized by its **mean** (μ) and **standard** deviation (σ)
 - Notated $X \sim \text{Normal}(\mu, \sigma)$
 - Different μ shifts the curve left/right
 - \bullet Higher σ "flattens" the curve
- Unlike the Binomial, the Normal is a continuous distribution
 - ullet X can take on any real value
 - The y-axis is not actually probability, but probability density
 - The area under the curve adds to 1



Visualizing the Normal Distribution



Visualizing the Normal Distribution



Normal Distribution in R

Normal Distribution in R

- Similarly to dbinom(), we have dnorm()
 - Returns a probability density rather than a probability!
 - These are not as interpretable, and can be greater than 1!

```
> dnorm(x=0, mean=0, sd=0.1)
[1] 3.989423
```

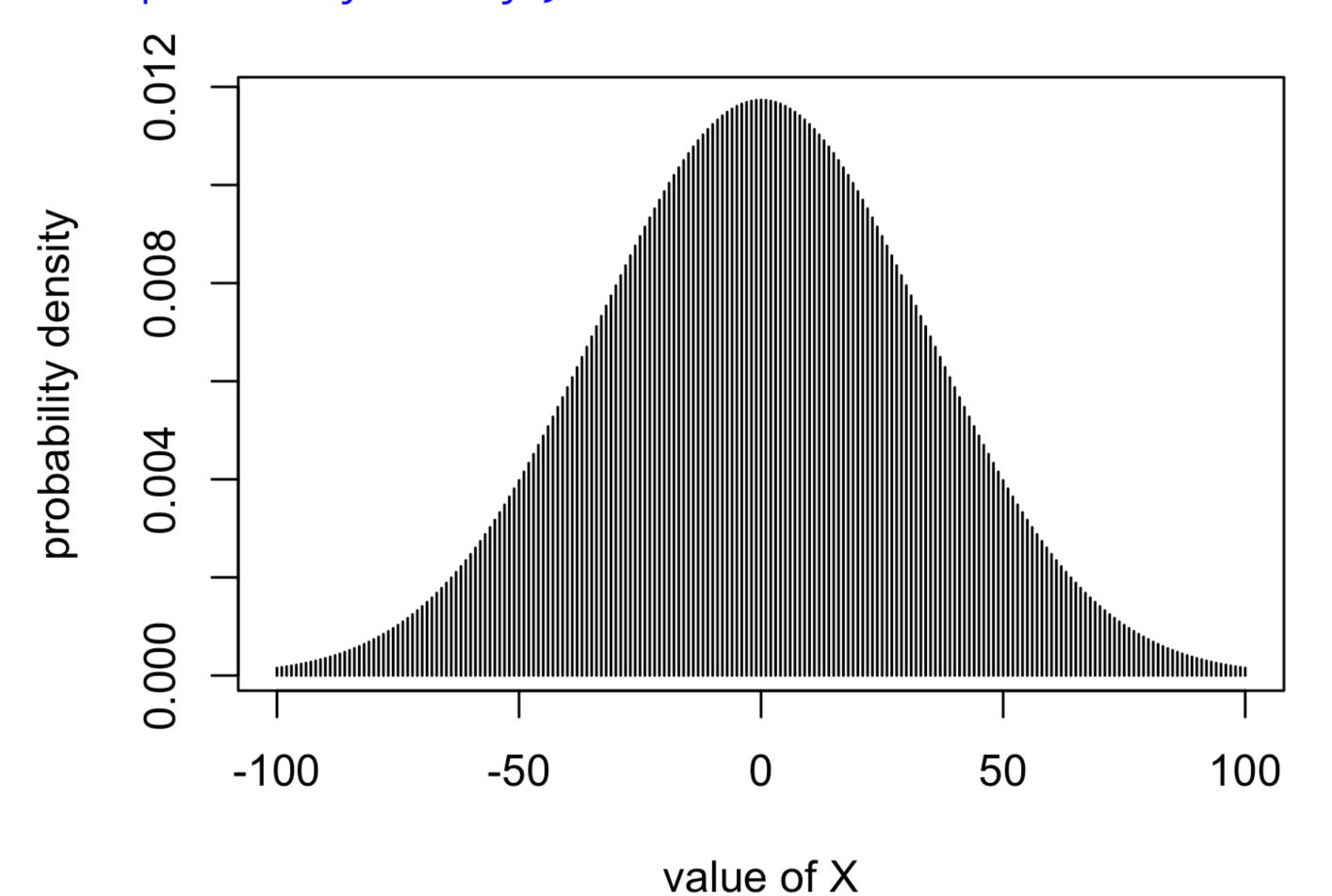
Normal Distribution in R

- Similarly to dbinom(), we have dnorm()
 - Returns a probability density rather than a probability!
- > dnorm(x=0, mean=0, sd=0.1)
 [1] 3.989423
- These are not as interpretable, and can be greater than 1!
- For continuous variables, we want the probability for X being in a certain range
 - pnorm() gives us the cumulative probability up to a certain value
 - pnorm(1.0, mean=0, sd=1) == 0.84 means that 84% of the probability
 mass falls below 1.0 for this Normal Distribution
 - pnorm(1.5) pnorm(1.0) gives us the probability that $1.0 \le X \le 1.5$ (9.2%)
 - pbinom() does the same thing for the Binomial Distribution

```
> pnorm(1.5, mean=0, sd=1) - pnorm(1.0, mean=0, sd=1)
[1] 0.09184805
```


Plotting the Normal Distribution

```
> norm_values = dnorm(c(-100:100), mean=0, sd=34)
> plot(x=c(-100:100), y=norm_values, type='h', xlab="value of X", y lab="probability density")
```



We often want to characterize the distribution of data "in the wild"

- We often want to characterize the distribution of data "in the wild"
- We often do this by modeling the data with one of these well-studied distributions
 - The model is useful insofar as it fits, explains, or predicts the data
 - Data in the wild doesn't always perfectly fit the model!

- We often want to characterize the distribution of data "in the wild"
- We often do this by modeling the data with one of these well-studied distributions
 - The model is useful insofar as it fits, explains, or predicts the data
 - Data in the wild doesn't always perfectly fit the model!
- It is often useful to assume some aspects of the data are Normally distributed (regression in particular assumes model error is Normal)
 - This is not always the case! But we'll make simplifying assumptions in this class

Samples and Populations

Descriptive vs. Inferential Statistics

Descriptive vs. Inferential Statistics

 Descriptive statistics: "concisely summarize what we do know" (i.e. from the data that we have)

Descriptive vs. Inferential Statistics

- Descriptive statistics: "concisely summarize what we do know" (i.e. from the data that we have)
- Inferential statistics: "learn about what we do not know from what we do"

- Descriptive statistics: "concisely summarize what we do know" (i.e. from the data that we have)
- Inferential statistics: "learn about what we do not know from what we do"
- The data we have is what we draw inferences from, but usually not what we draw inferences about

- Descriptive statistics: "concisely summarize what we do know" (i.e. from the data that we have)
- Inferential statistics: "learn about what we do not know from what we do"
- The data we have is what we draw inferences from, but usually not what we draw inferences about
 - Data is considered to be a sample taken from a larger population

- Descriptive statistics: "concisely summarize what we do know" (i.e. from the data that we have)
- Inferential statistics: "learn about what we do not know from what we do"
- The data we have is what we draw inferences from, but usually not what we draw inferences about
 - Data is considered to be a sample taken from a larger population
 - The population is what we want to learn about

- Descriptive statistics: "concisely summarize what we do know" (i.e. from the data that we have)
- Inferential statistics: "learn about what we do not know from what we do"
- The data we have is what we draw inferences from, but usually not what we draw inferences about
 - Data is considered to be a sample taken from a larger population
 - The population is what we want to learn about
 - Ex: our formant data in vowels.csv only represents 44 speakers, but we use it to make generalizations about English speakers in general!

 A sample is by definition incomplete: the population of interest is often arbitrarily large (e.g. "all U.S. adults" or "all linguistics majors")

- A sample is by definition incomplete: the population of interest is often arbitrarily large (e.g. "all U.S. adults" or "all linguistics majors")
- The population is usually more abstract than the sample
 - We have a full accounting of all speakers of a certain language in a study
 - For most languages, there is no full accounting of "all language speakers"

- A sample is by definition incomplete: the population of interest is often arbitrarily large (e.g. "all U.S. adults" or "all linguistics majors")
- The population is usually more abstract than the sample
 - We have a full accounting of all speakers of a certain language in a study
 - For most languages, there is no full accounting of "all language speakers"
- In experimental design, it's important to:
 - Be precise about the population of interest
 - Be conscious of how the sample does or does not represent the population

Random sampling

- The ideal way to sample from a population is random sampling
 - I.e. all members of the population have an equal chance of being sampled

simple random samples

(without replacement)

• This is **essentially impossible** in practice!

population

a b c d e i e a f

g b i j

g c f d

• In real life, sampling almost always introduces bias

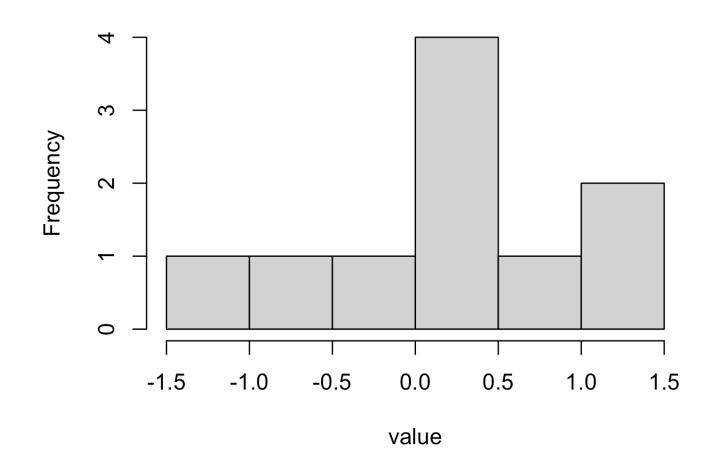
- In real life, sampling almost always introduces bias
- Example: election polling
 - High-quality U.S. political polls are almost always administered by phone
 - The type of person willing to answer a strange number and do a survey is not representative of the average American!
 - Known bias in election polling towards older and more politically engaged people

- In real life, sampling almost always introduces bias
- Example: election polling
 - High-quality U.S. political polls are almost always administered by phone
 - The type of person willing to answer a strange number and do a survey is not representative of the average American!
 - Known bias in election polling towards older and more politically engaged people
- There are methods to adjust for sampling bias, but there is almost no way to be rid of it!

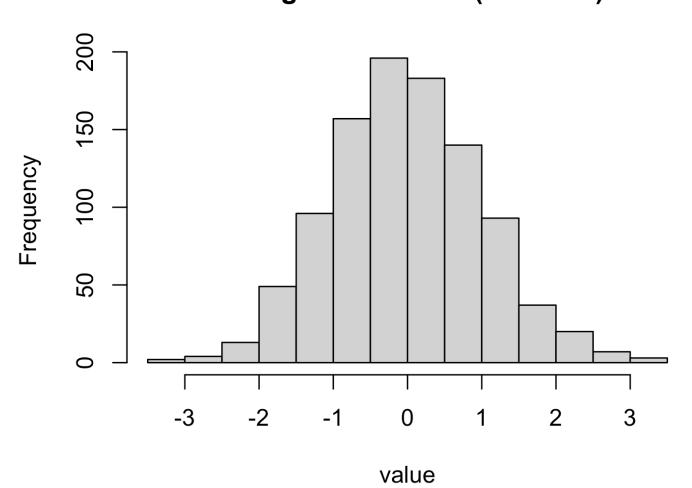
- The Law of Large Numbers is a mathematical proof that most people understand intuitively:
 - The larger the sample size, the better the sample approximates the population

- The Law of Large Numbers is a mathematical proof that most people understand intuitively:
 - The larger the sample size, the better the sample approximates the population
- We can observe this by sampling from a distribution in R
 - rnorm() and rbinom() give random samples from their respective distributions
 - rnorm(n=100, mean=0, sd=1) draws 100 random samples from the Normal
 - Putting the samples into hist() shows us the sample distribution

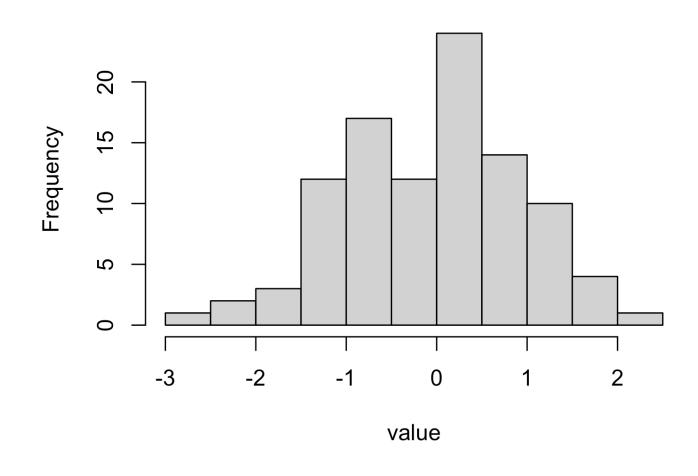
Histogram of rnorm(n = 10)



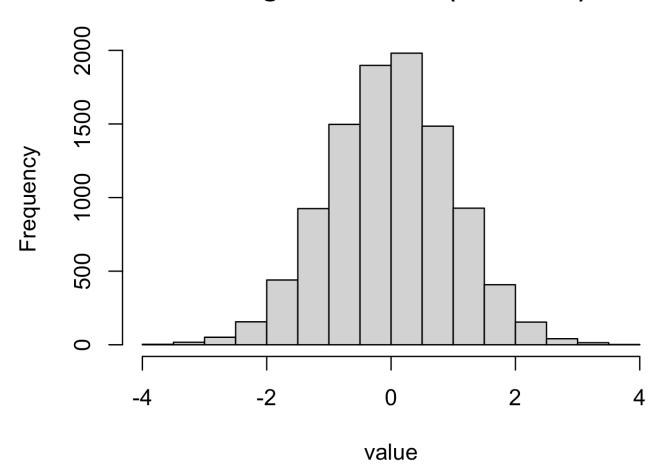
Histogram of rnorm(n = 1000)



Histogram of rnorm(n = 100)



Histogram of rnorm(n = 10000)



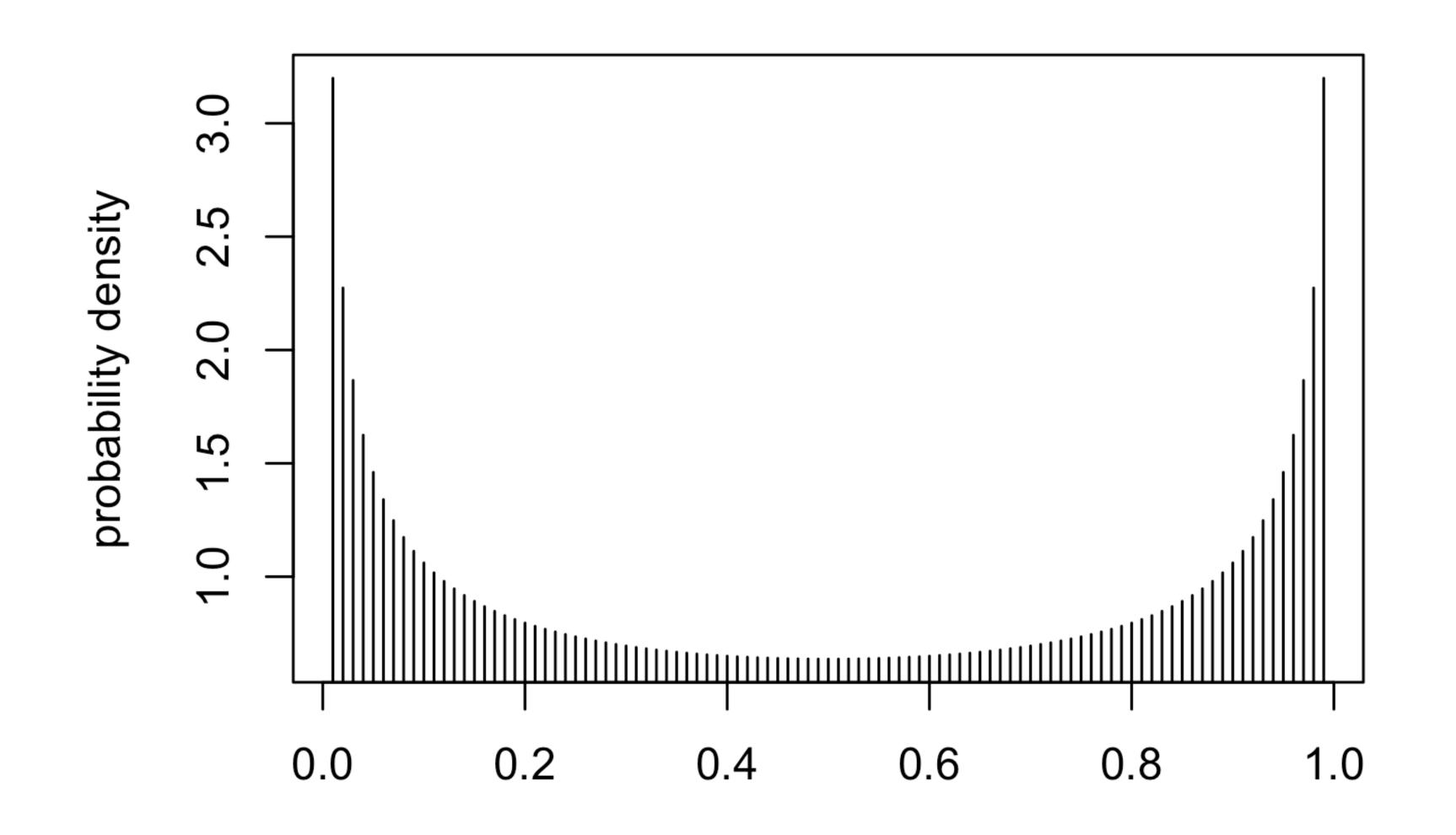
- What sample size is large enough to adequately represent the population?
 - Tricky question, but we can begin to address it with sampling distributions

- What sample size is large enough to adequately represent the population?
 - Tricky question, but we can begin to address it with sampling distributions
- Sampling distributions are formed by sampling many times from the same population, using a certain sample size
 - Example: repeatedly sample five values from some population
 - Calculate and plot the mean for each sample
 - What you get is the "Sampling Distribution of the Mean"

- What sample size is large enough to adequately represent the population?
 - Tricky question, but we can begin to address it with sampling distributions
- Sampling distributions are formed by sampling many times from the same population, using a certain sample size
 - Example: repeatedly sample five values from some population
 - Calculate and plot the mean for each sample
 - What you get is the "Sampling Distribution of the Mean"
- The Sampling Distribution of the Mean is <u>always</u> Normal, even if the original distribution is not!

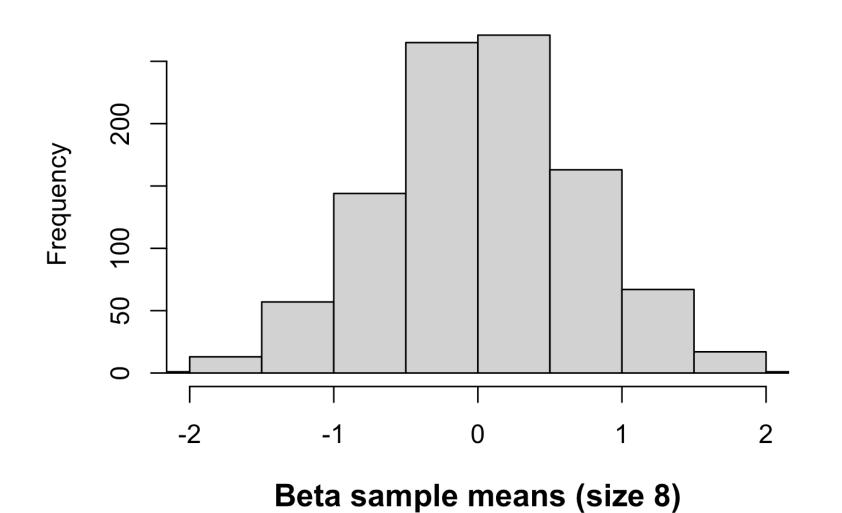
Example: Beta Distribution

Beta Distribution



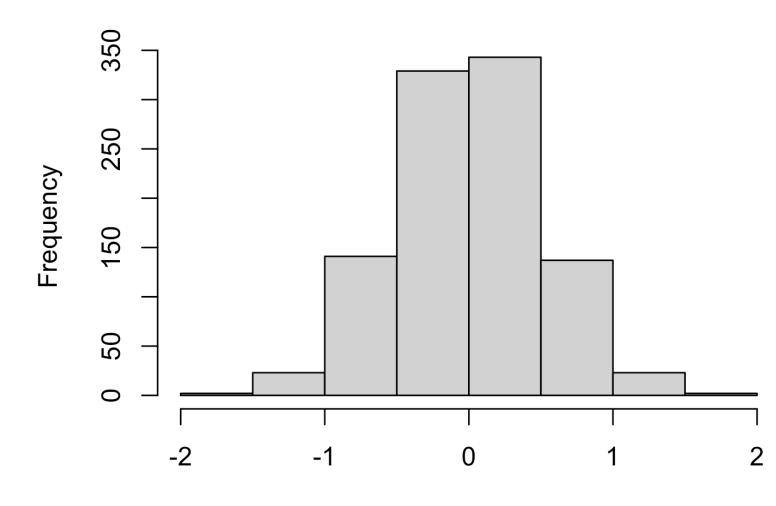
(not Normally distributed)

Example: Beta Distribution

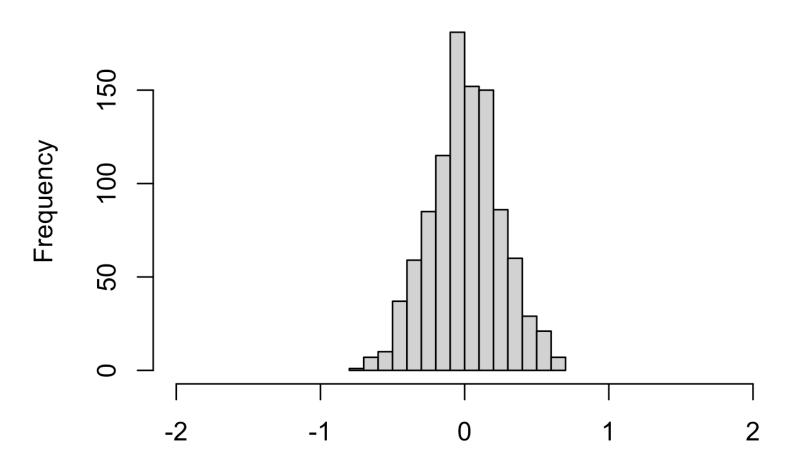


Frequency 0 50 100 150 200

Beta sample means (size 4)



Beta sample means (size 16)

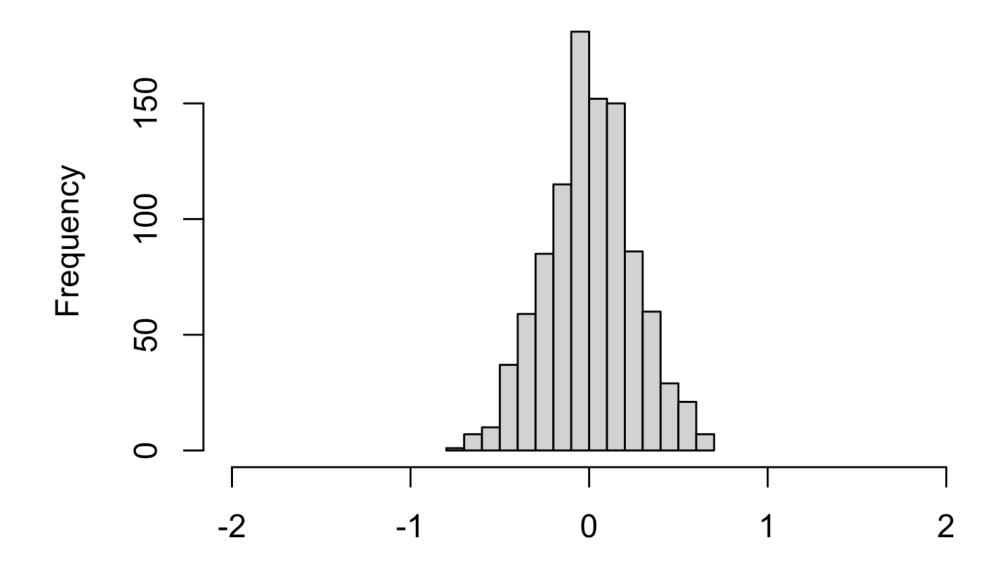


Why does this matter?

Why does this matter?

- The Sampling Distribution of the Mean shows us that:
 - For any underlying population,
 - For any sample size,
 - We know by approximately how much the sample mean deviates from our population mean

Beta sample means (size 16)



Why does this matter?

- The Sampling Distribution of the Mean shows us that:
 - For any underlying population,
 - For any sample size,
 - We know by approximately how much the sample mean deviates from our population mean
- This relationship between sample mean and population mean is called the Standard Error of the Mean (SEM)
 - This is part of what is known as the Central Limit Theorem

Beta sample means (size 16)

