
Ling 250: Initial computer setup guide for Windows 
This guide is meant to help you set up your computer for the exercises and homeworks we will 
do in class, since the tools we will be using throughout the class can be finicky if they’re not set 
up in the correct way. Unfortunately, Windows systems require a few more steps to set up for 
this class, since many tools assume an operating system that is based on an older operating 
system called UNIX. Mac, Linux, and even iOS are based on UNIX, whereas Windows is not. 
This will not make the coursework more difficult, but will mean that you have to jump through a 
few more hoops while setting up. 

Install Visual Studio Code 
When writing and working with code, it will be most convenient to work within a program called 
an Integrated Development Environment (IDE). This sounds complicated, but it is essentially 
just a text editor with some fancy add-ons, such as being able to use the computer’s command 
line side by side with code or other files that you want to edit. The IDE we will use is called 
Visual Studio Code (Microsoft’s main IDE). Note: if you are already familiar with IDEs, and have 
another one that you would strongly prefer to use over Visual Studio Code, you may do so. 
However you are responsible for resolving any confusion that results from not using the 
recommended software. 
 

●​ Step 1: Go to https://code.visualstudio.com and select “Download for Windows” 
●​ Step 2: An application starting with VSCodeUserSetup will appear in your Downloads 

folder. Double click on this application to start the installation process. 
●​ Step 3: Where prompted, select “Next” and agree to the software license. The default 

options on each page of the installation should be fine. On the page titled “Select 
Additional Tasks”, you can optionally check “Create a desktop icon” if you want to create 
a shortcut to the IDE on your desktop. 

 

 
 

●​ Step 4: Click “Install” and “Finish” when prompted. 

https://code.visualstudio.com


 
Visual Studio Code should now be installed on your computer. Feel free to open the program 
and explore some of its functionality (particularly opening .txt files and folders). We will have a 
brief demonstration of this program on the second day of class. Until then, I would avoid 
tweaking more advanced settings, unless you already know what you’re doing. 

Install Git/Bash 
Unix-based systems share a common set of commands for interacting with the computer by 
typing (this interaction is called the “command line” or “terminal”). Most people are familiar with 
this from Hollywood depictions of hackers. The most common variant of these commands is 
called bash, though zsh is now standard on Mac, and you might occasionally see plain sh. 
Bash, zsh, and sh are only minimally different, and you can think of them as dialects of the 
same language. Windows, on the other hand, has long used its own language(s) for the 
command line. 
 
In order to have everyone in the class working with the same environment, we will install bash 
on Windows computers. Fortunately, this comes packaged with another tool that Windows users 
need to install for this class: Git. Git is a system for tracking and saving changes to files (usually 
source code or text files). The advantage of Git over just saving files in the normal way is that it 
allows multiple different versions of the same file to be kept, and for conflicts between file 
versions to be resolved automatically. 
 

●​ Step 1: Go to https://git-scm.com/downloads/win and select the link that says “Click here 
to download the latest 64-bit version of Git for Windows.” 

●​ Step 2: An application called Git-<some_number>-64-bit will appear in your 
Downloads folder. Double click on this application to start the installation process. 

●​ Step 3: Where prompted, select “Next” and agree to the software license. The default 
options on each page of the installation should be fine until step 4. 

●​ Step 4: On the page titled “Choosing the default editor used by Git”, select “Use Visual 
Studio Code as Git’s default editor” from the drop-down box. 

 
●​ Step 5 (optional): On the page “Adjusting the name of the initial branch in new 

repositories”, you can optionally select “Override the default branch name for new 
repositories” and use “main”. This is completely up to you, as “main” tends to be a more 

https://git-scm.com/downloads/win


common name nowadays, but it is fine to leave “Let Git decide” selected, in which case 
the default branch of each of your projects will be named “master”. 

 
●​ Step 6: On the page “Adjusting your PATH environment”, select “Use Git from Git Bash 

only”. 

 
●​ Step 7: On the page “Choosing the SSH executable”, select “Use bundled OpenSSH”. 

 
●​ Step 8: On the page “Choosing the HTTPS transport backend”, choose “Use the 

OpenSSL library”. 



 
●​ Step 9: On the page “Configuring the line ending conversions”, select “Checkout 

Windows-style, commit Unix-style line endings”. 

 
●​ Step 10: On the page “Configuring the terminal emulator to use with Git Bash”, select 

“Use MinTTY”. 

 
●​ Step 11: On the page “Choose the default behavior of git pull”, select “Fast-forward or 

merge”. 



 
●​ Step 12: On the page “Choose a credential helper”, select “Git Credential Manager”. 

 
●​ Step 13: On the page “Configure extra options”, only select “Enable file system caching”. 

 
●​ Step 14: Click “Install” and then “Finish” when prompted. 
●​ Step 15: To test that git bash is working properly, go to your file browser, navigate to a 

folder with some files in it, then right click and select “Open Git Bash here”. 



 
 

●​ Step 16: The Git Bash command line should show up. Type ls (followed by enter), and 
the command line should print out the contents of the folder. 

 
●​ Step 17: Last, we will make sure we can open the Git Bash command line within Visual 

Studio Code. Open VS Code. At the top of the window, go to the menu titled “Terminal” 
and select “New Terminal”. A command line should pop up within the program. 

●​ Step 18: The default command line is actually not Git Bash (it’s Windows’ proprietary 
PowerShell instead). To start a Git Bash session, look above the command line where it 
says “powershell”, and mouse over the drop-down symbol next to the plus. Select “Git 
Bash” from among the options, and a Git Bash session will open. 



 

 
●​ Step 19: To change the default terminal to always be Git Bash, from the same options 

from clicking next to the plus, select “Select Default Profile”. In the drop-down menu that 
appears near the top of the window, select “Git Bash”. Any new terminals started in VS 
Code will now be Git Bash. 



 

 
 
And that’s it! Git and bash (packaged together as Git Bash), are now installed on your computer. 
We will go over using the command line in much more detail on the second day of class, and we 
will introduce Git in a week or two. 

Install Anaconda 
The main programming language we will be using in this course is Python, which is one of the 
most commonly used languages for science and data exploration. There are many different 



versions of Python, and we will often want to use packages that people have written to add on 
to Python, which have their own version numbers. To more easily manage all these versions, 
and to make sure everyone is working with the same versions, we will use a Python 
management tool called Anaconda. 
 

●​ Step 1: Go to https://www.anaconda.com/download/success to download Anaconda (use 
this link, or else it might try to pressure you to register with an email). Click on the icon to 
download for Windows. 

 
●​ Step 2: The Anaconda installer will have appeared in your Downloads folder. Double 

click on it to begin installation. 
●​ Step 3: Click “Next” and leave the default options until you get to the page “Choose 

Install Location”. Write down or copy and paste the path shown in the “Destination 
Folder” box, then click “Next”. 

 
●​ Step 4: On the page “Advanced Installation Options”, check the boxes saying “Create 

shortcuts”, “Register Anaconda3 as my default Python”, and “Clear package cache upon 
completion”. Leave “Add Anaconda3 to my PATH” un-checked. 

https://www.anaconda.com/download/success


 
●​ Step 5: Click “Install”. 
●​ Step 6: When the installation finishes, click “Next” until you get to a page with a button 

that says “Finish”. Before clicking it, un-check the two option boxes. 
●​ Step 7: While Anaconda is now installed, it unfortunately is not yet accessible within Git 

Bash. This step is tricky, so I’ll have you follow a separate guide: 
https://discuss.codecademy.com/t/setting-up-conda-in-git-bash/534473. Please skip to 
Part 3 of this guide. Part of the instructions are to find the folder where Anaconda was 
installed. If you wrote down the path from Step 3 of my guide, this is the folder you’re 
looking for. Make sure to read carefully and type the commands exactly as the 
guide recommends. 

●​ Step 8: There are a few things you can do to check if this step was successful. First, in 
Git Bash, you should be able to type the command tail ~/.bashrc and it will print 
out the path used in Step 7.See below for a picture of what this looks like. If this looks 
good, close Git Bash and re-open it (note: if you’re in VS Code, you have to close the 
terminal with the trash-can button that says “kill terminal”). After doing this, if you get a 
message about “incorrect login”, close and re-open Git Bash one more time. At this 
point, you should be able to type the command conda activate and a small note in 
parentheses will say something either about “base” or “anaconda3”, indicating anaconda 
is active. 

 
●​ Step 9: As one final verification, typing the command which python should print out a 

path to python that leads through the anaconda3 folder. 

https://discuss.codecademy.com/t/setting-up-conda-in-git-bash/534473


 
●​ Step 10 (optional): After typing conda activate you might not get a nice neat 

indicator saying “(base)” or “(anaconda3)”, but instead get something like this alarming 
garbage shown in the following figure. If this annoys you as much as it annoys me, there 
is a simple fix (and the problem is with VS Code). Go to your VS Code settings (using 
the gear icon). In the box to search settings, type 
“terminal.integrated.shellIntegration.enabled”. In the setting that comes up from this 
search, simply un-check the box. You will need to close your Git Bash session (with the 
trash-can icon) and re-open it for these changes to apply. 

 

 


	Ling 250: Initial computer setup guide for Windows 
	Install Visual Studio Code 
	Install Git/Bash 
	Install Anaconda 


