Linear Algebra

Ling 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2024

Today's Plan

- Review vector and matrix operations
- Discuss vector independence and span
- Dissect matrix multiplication
- Introduce linear transformations

Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22

Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22

Vectors

Lists of scalars

Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22

Vectors

Lists of scalars

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22
- Vectors
 - Lists of scalars
- Matrices
 - Lists of vectors

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22

Vectors

Lists of scalars

Matrices

Lists of vectors

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$

• By default, vectors are considered to be *columns*

• By default, vectors are considered to be *columns*

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

- By default, vectors are considered to be *columns*
 - Transposed vectors are rows

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

- By default, vectors are considered to be columns
 - Transposed vectors are rows

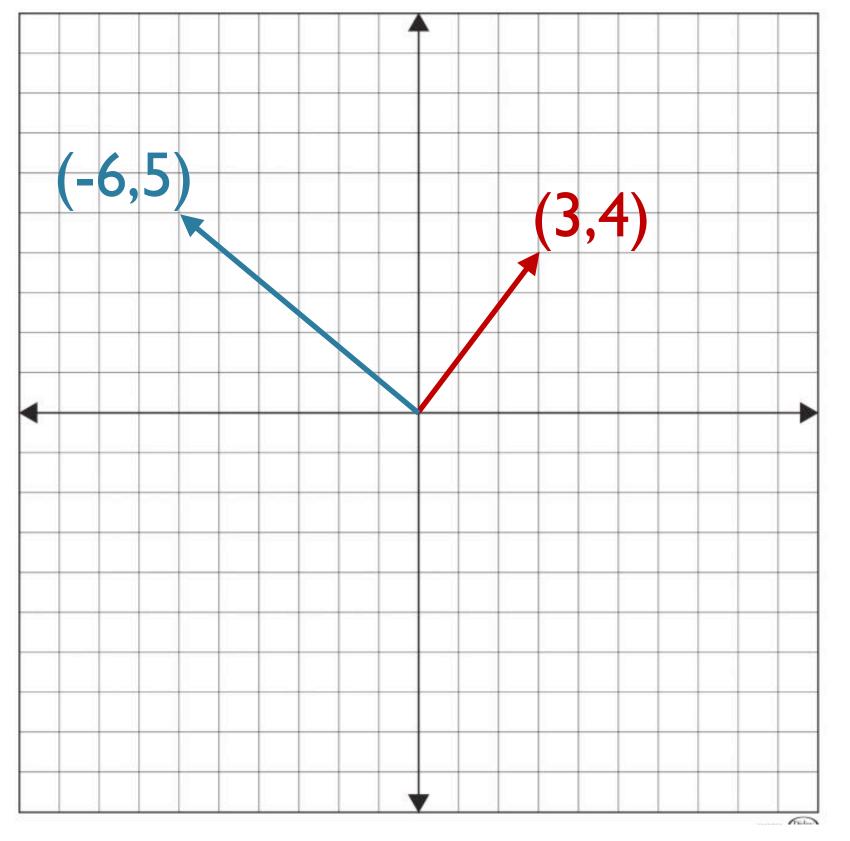
$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad x^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

- By default, vectors are considered to be columns
 - Transposed vectors are rows
 - Often visualized as arrows or points in space

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad x^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

- By default, vectors are considered to be columns
 - Transposed vectors are rows
 - Often visualized as arrows or points in space

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad x^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$



$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \\ x_3 - y_3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 - $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ = $\begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \\ x_3 - y_3 \end{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ cx_3 \end{bmatrix}$$

(c is a scalar)

Vector Spans and Spaces

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + c_2 \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Two vectors are linearly **dependent** iff there are scalars c_1, c_2 :

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + c_2 \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• ...except for $c_1 = c_2 = 0$ (which always gives the zero vector)

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + c_2 \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

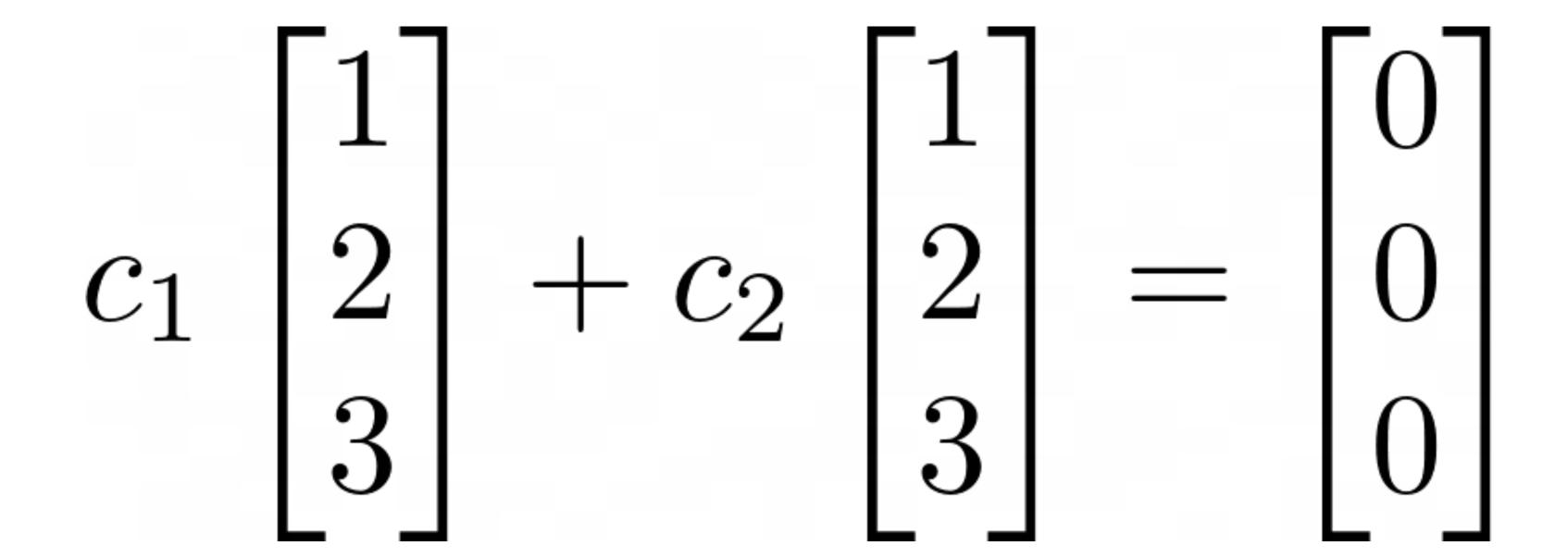
- ...except for $c_1 = c_2 = 0$ (which always gives the zero vector)
- Otherwise the vectors are independent

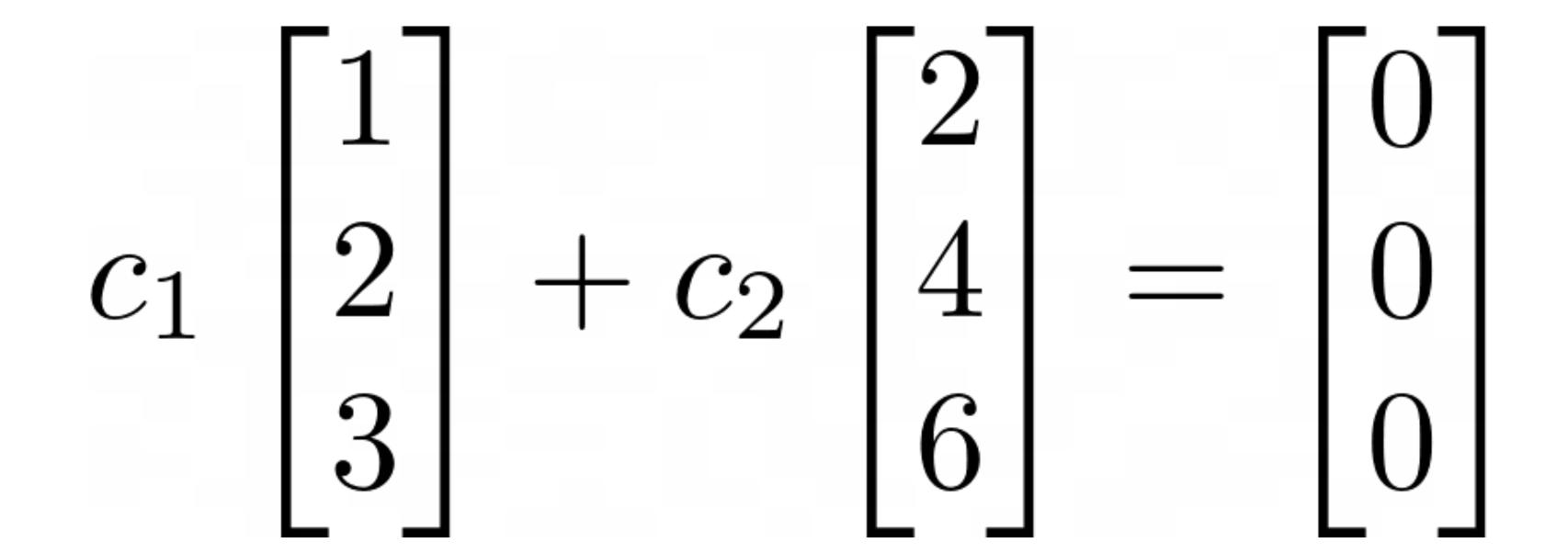
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + c_2 \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- ...except for $c_1=c_2=0$ (which always gives the zero vector)
- Otherwise the vectors are independent
- Definition applies to any number of vectors and constants

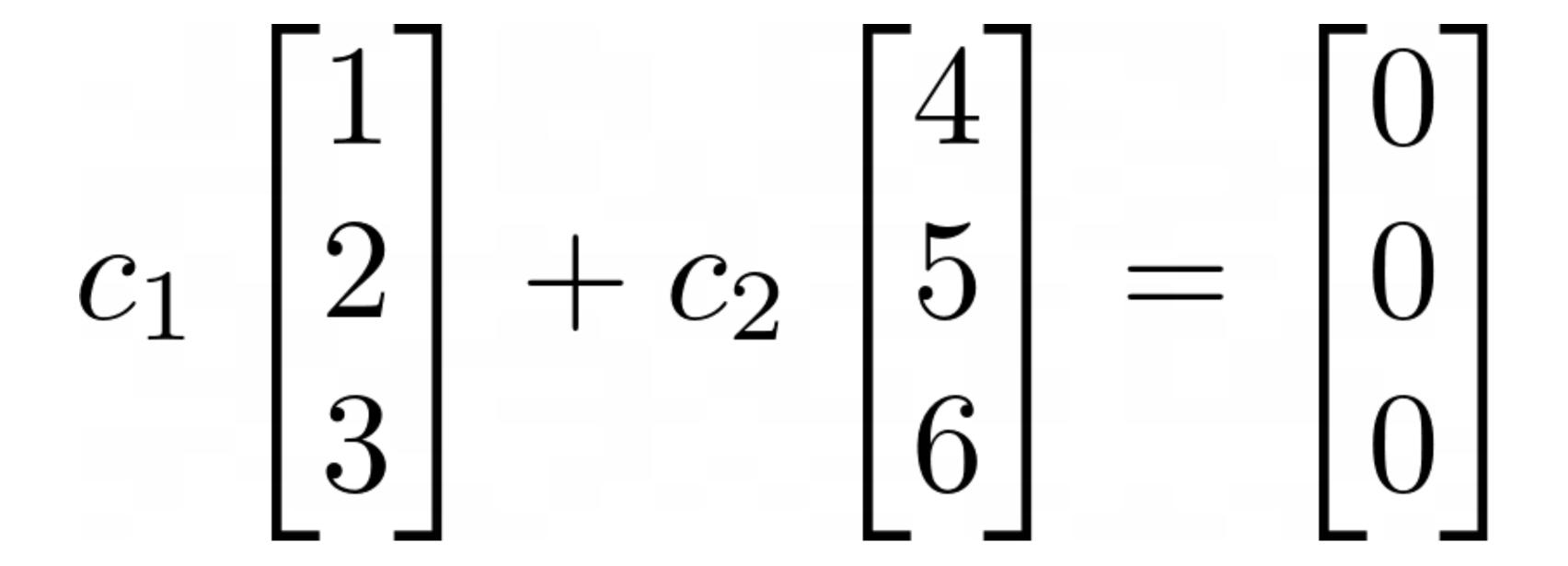
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + c_2 \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- ...except for $c_1=c_2=0$ (which always gives the zero vector)
- Otherwise the vectors are independent
- Definition applies to any number of vectors and constants
- Note: a = 0 is used to indicate a vector of zeros



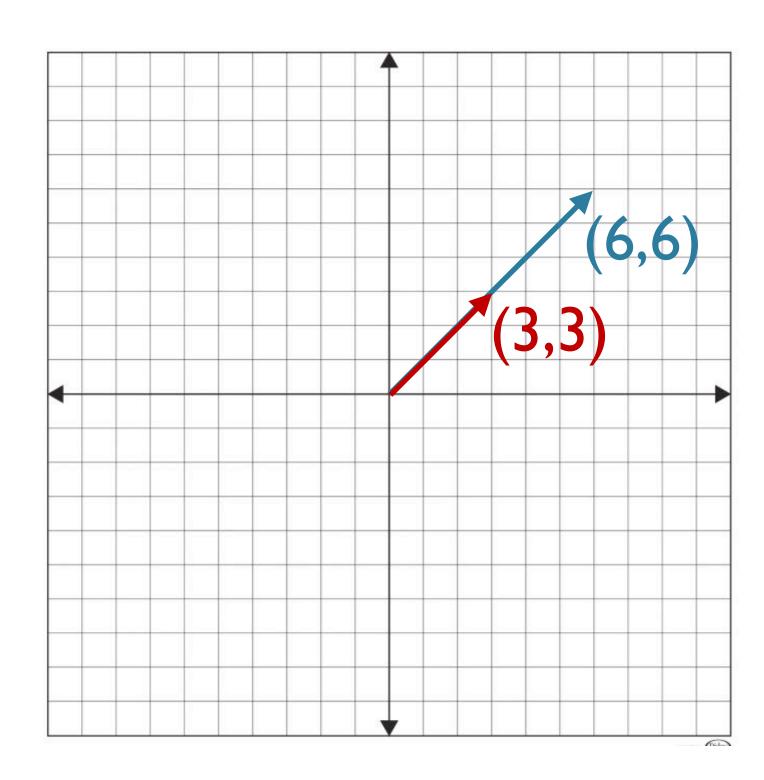


$$c_{1} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + c_{2} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + c_{3} \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

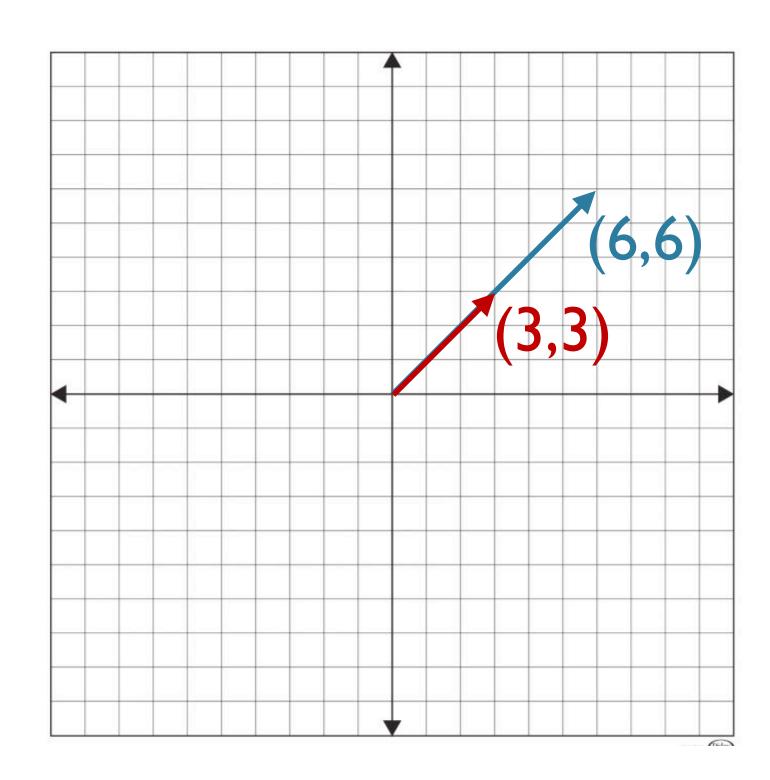


Vectors are dependent if they are colinear

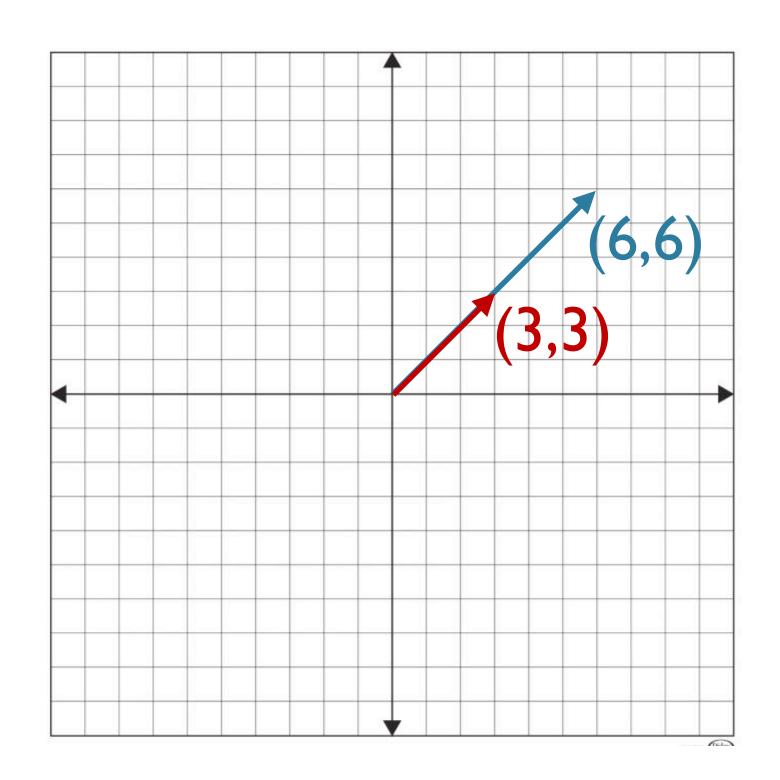
Vectors are dependent if they are colinear

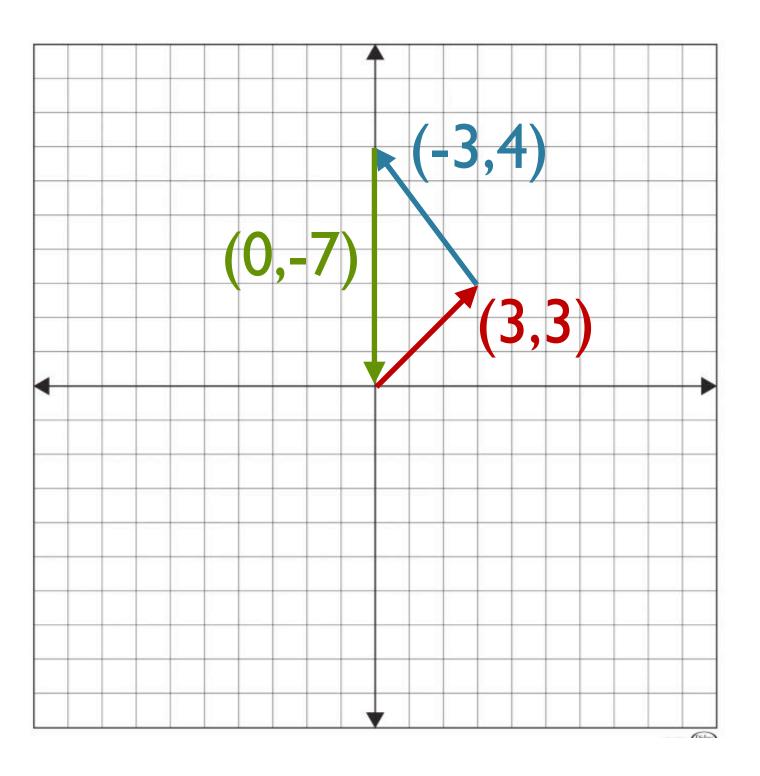


- Vectors are dependent if they are colinear
- Non-colinear vectors can also be dependent

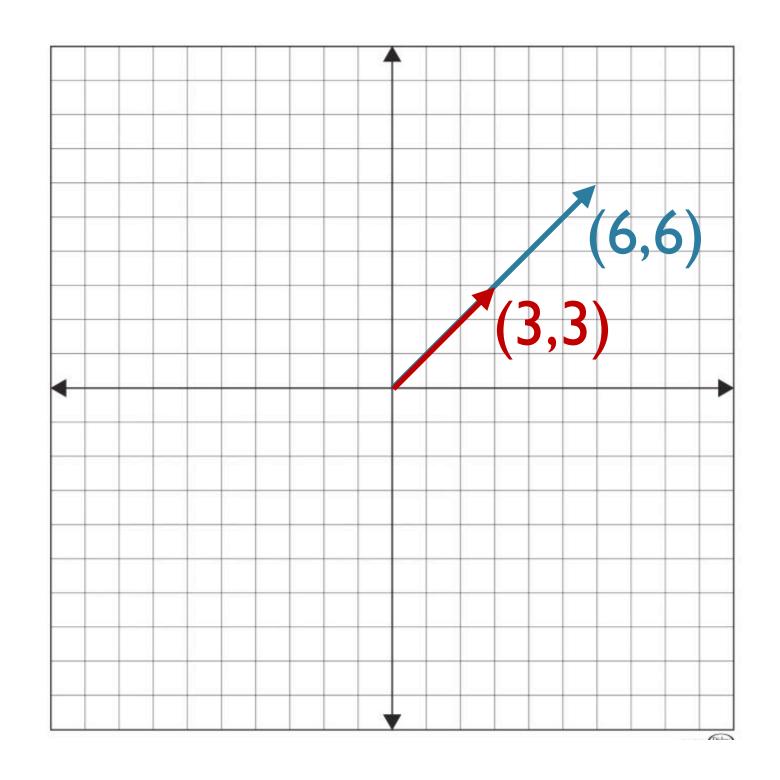


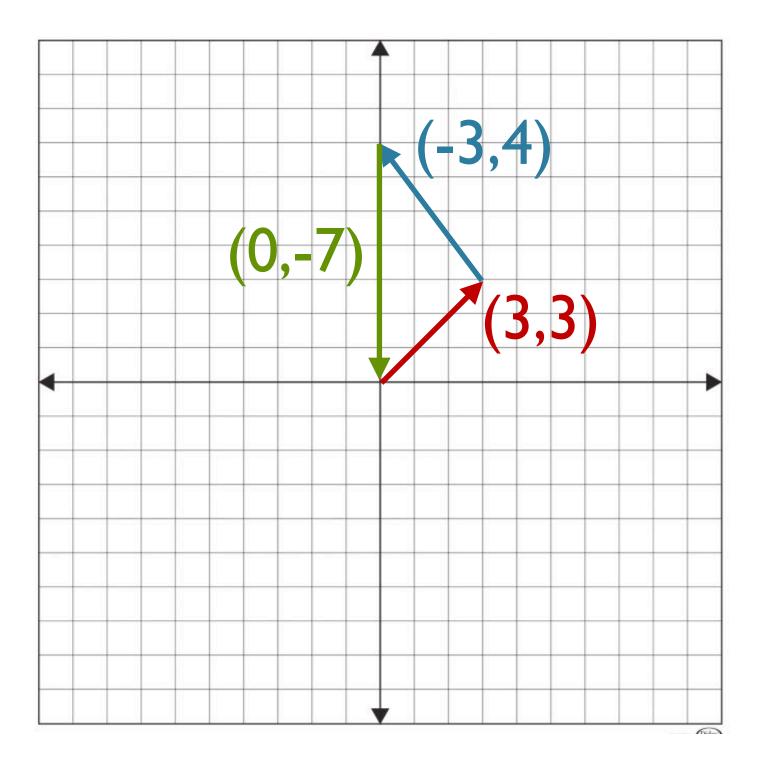
- Vectors are dependent if they are colinear
- Non-colinear vectors can also be dependent





- Vectors are dependent if they are colinear
- Non-colinear vectors can also be dependent



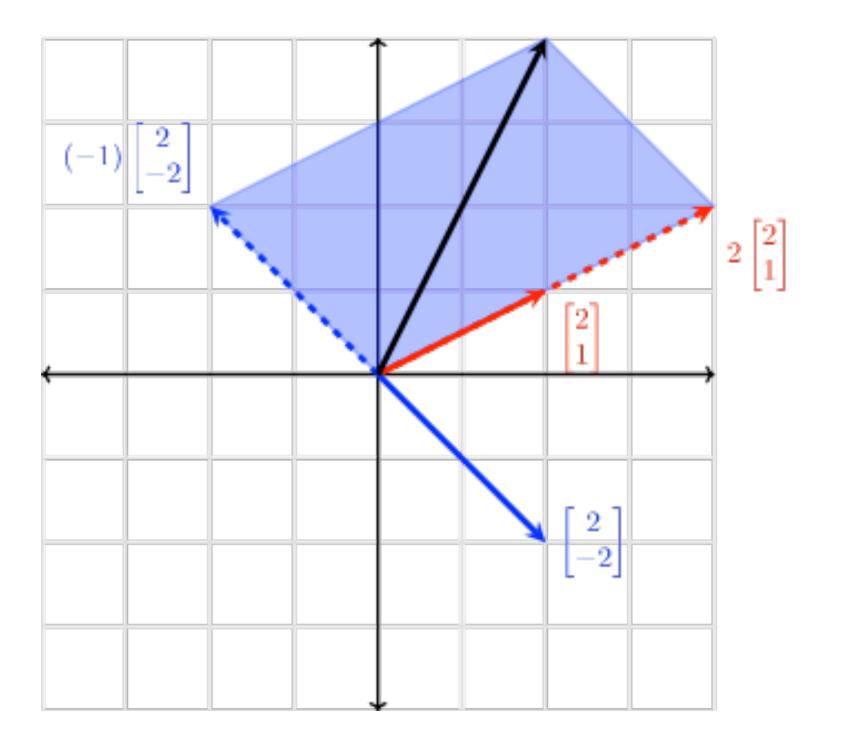


(this is what adding vectors looks like)

 Adding together vectors with different constants is called a linear combination of those vectors

- Adding together vectors with different constants is called a linear combination of those vectors
- The set of all linear combinations of some vectors is called their span

- Adding together vectors with different constants is called a linear combination of those vectors
- The set of all linear combinations of some vectors is called their span



ullet The entirety of 1-dimensional space is called R^1

- ullet The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called \mathbb{R}^2

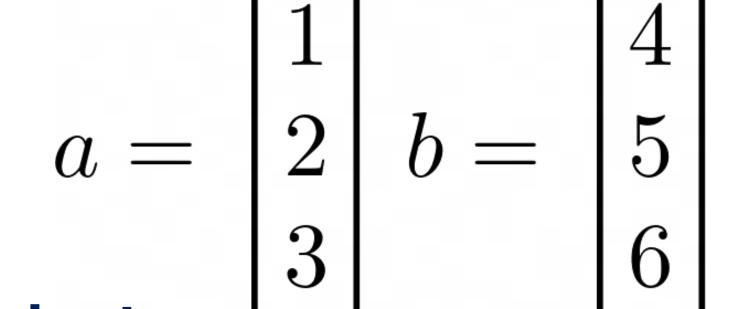
- ullet The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called \mathbb{R}^2
 - and so on

- ullet The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called R^2
 - and so on
- ullet Two vectors of size 2 span \mathbb{R}^2 iff they are independent

- ullet The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called R^2
 - and so on
- ullet Two vectors of size 2 span \mathbb{R}^2 iff they are independent
- Three vectors of size 3 span \mathbb{R}^3 iff they are independent

- ullet The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called R^2
 - and so on
- Two vectors of size 2 span \mathbb{R}^2 iff they are independent
- ullet Three vectors of size 3 span \mathbb{R}^3 iff they are independent
- If the num of independent vectors is **less than the vector dimension**, they span a **(hyper)plane** within the larger space

- ullet The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called R^2
 - and so on
- ullet Two vectors of size 2 span \mathbb{R}^2 iff they are independent
- ullet Three vectors of size 3 span \mathbb{R}^3 iff they are independent
- If the num of independent vectors is **less than the vector dimension**, they span a **(hyper)plane** within the larger space



- ullet The entirety of 1-dimensional space is called R^{\perp}
 - 2-dimensional space is called R^2
 - and so on
- $a = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$ $a = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$ • Two vectors of size 2 span \mathbb{R}^2 iff they are independent
- Three vectors of size 3 span \mathbb{R}^3 iff they are independent
- If the num of independent vectors is less than the vector dimension, they span a (hyper)plane within the larger space
 - Ex: a and b above span a 2-D plane in R^3

 A set of independent vectors that span a space are called a basis for that space

- A set of independent vectors that span a space are called a basis for that space
 - The simplest bases for \mathbb{R}^2 and \mathbb{R}^3 are known as the **Standard Basis**:

- A set of independent vectors that span a space are called a basis for that space
 - The simplest bases for \mathbb{R}^2 and \mathbb{R}^3 are known as the **Standard Basis**:

$$i = \begin{bmatrix} 1 \\ 0 \end{bmatrix} j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

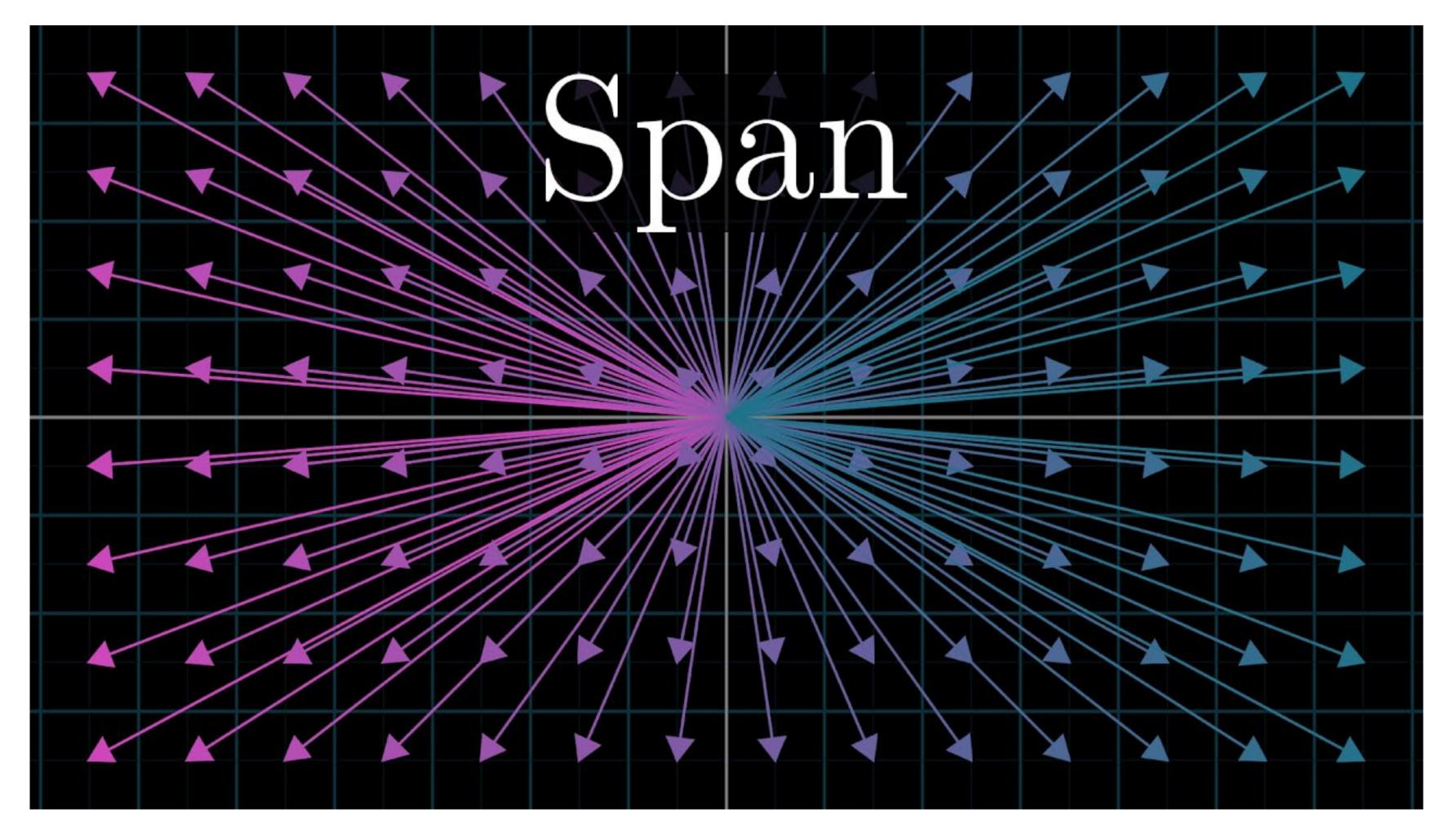
- A set of independent vectors that span a space are called a basis for that space
 - ullet The simplest bases for \mathbb{R}^2 and \mathbb{R}^3 are known as the **Standard Basis**:

$$i = \begin{bmatrix} 1 \\ 0 \end{bmatrix} j = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad i = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} j = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} k = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

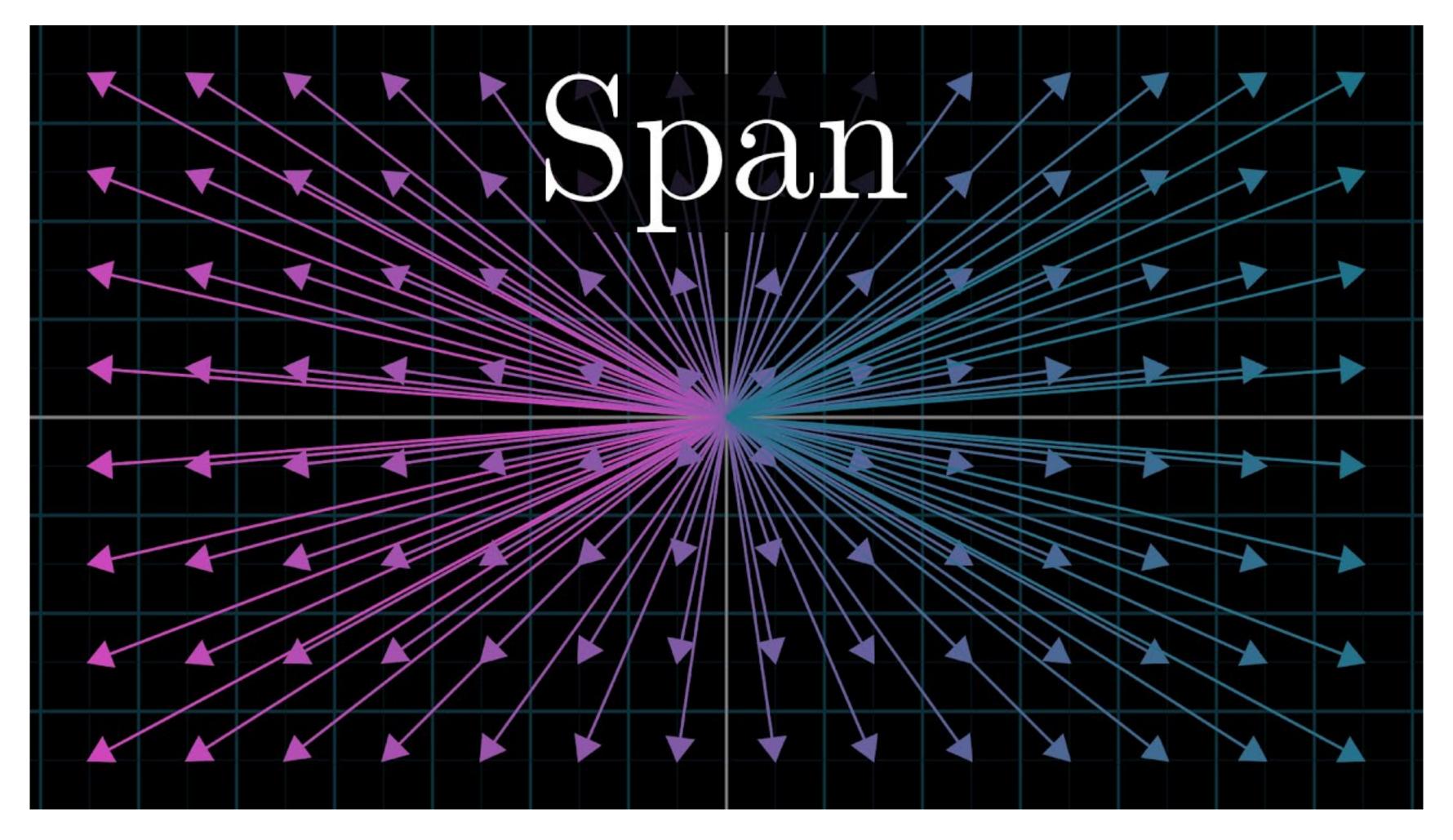
- A set of independent vectors that span a space are called a basis for that space
 - The simplest bases for \mathbb{R}^2 and \mathbb{R}^3 are known as the **Standard Basis**:
 - These are not the only bases for these spaces

$$i = \begin{bmatrix} 1 \\ 0 \end{bmatrix} j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 $i = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} j = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} k = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Span Video



Span Video



Matrix Multiplication

Quick reminder: Dot Product

$$a \cdot b = a^T b = a_1 b_1 + a_2 b_2 \dots + a_n b_n$$

Quick reminder: Dot Product

$$a \cdot b = a^T b = a_1 b_1 + a_2 b_2 \dots + a_n b_n$$

(vectors need to be the same length)

Matrix-Vector Multiplication

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$Ax = ?$$

• Matrix multiplication is **not** commutative: $Ax \neq xA$

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

```
egin{array}{ccc} 1 & 5 \ 2 & 6 \ 3 & 7 \ 4 & 8 \ \end{array}
```

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

```
\begin{bmatrix} 1 & 5 \ 2 & 6 \ 3 & 7 \ 4 & 8 \end{bmatrix}
```

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

$$\begin{bmatrix} 1 & 5 \ 2 & 6 \ 3 & 7 \ 4 & 8 \end{bmatrix}$$

2 columns

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

$$\begin{bmatrix} 1 & 5 \ 2 & 6 \ 3 & 7 \ 4 & 8 \end{bmatrix}$$

2 columns

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

• The "inner" sizes of the matrices must match
$$\begin{bmatrix}1&5\\2&6\\3&7\\4&8\end{bmatrix} \begin{bmatrix}1&4\\2&5\\3&6\end{bmatrix} \begin{bmatrix}7&9&11\\8&10&12\end{bmatrix}$$

2 columns

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

4 rows
$$\begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$

$$\sqrt{\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}} \begin{bmatrix} 7 & 9 & 11 \\ 8 & 10 & 12 \end{bmatrix}$$

$$3x2 \qquad 2x3$$

2 columns

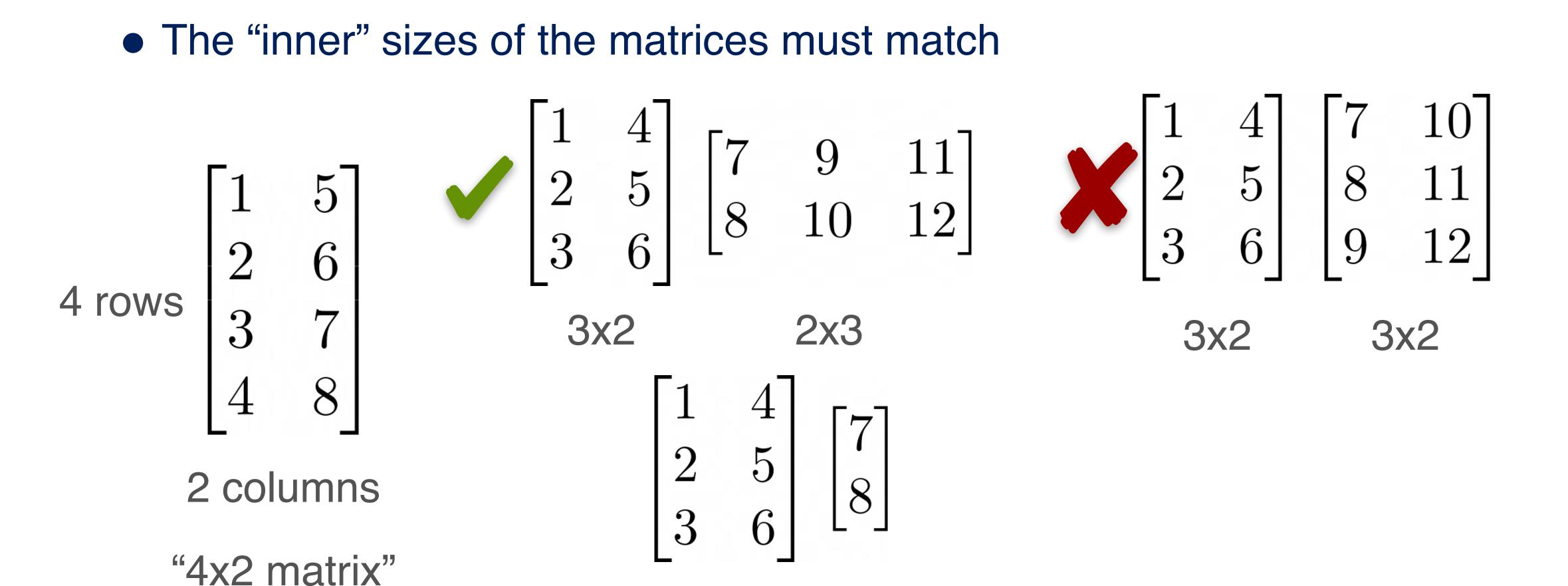
- Matrix multiplication is **not** commutative: $Ax \neq xA$

2 columns

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

2 columns

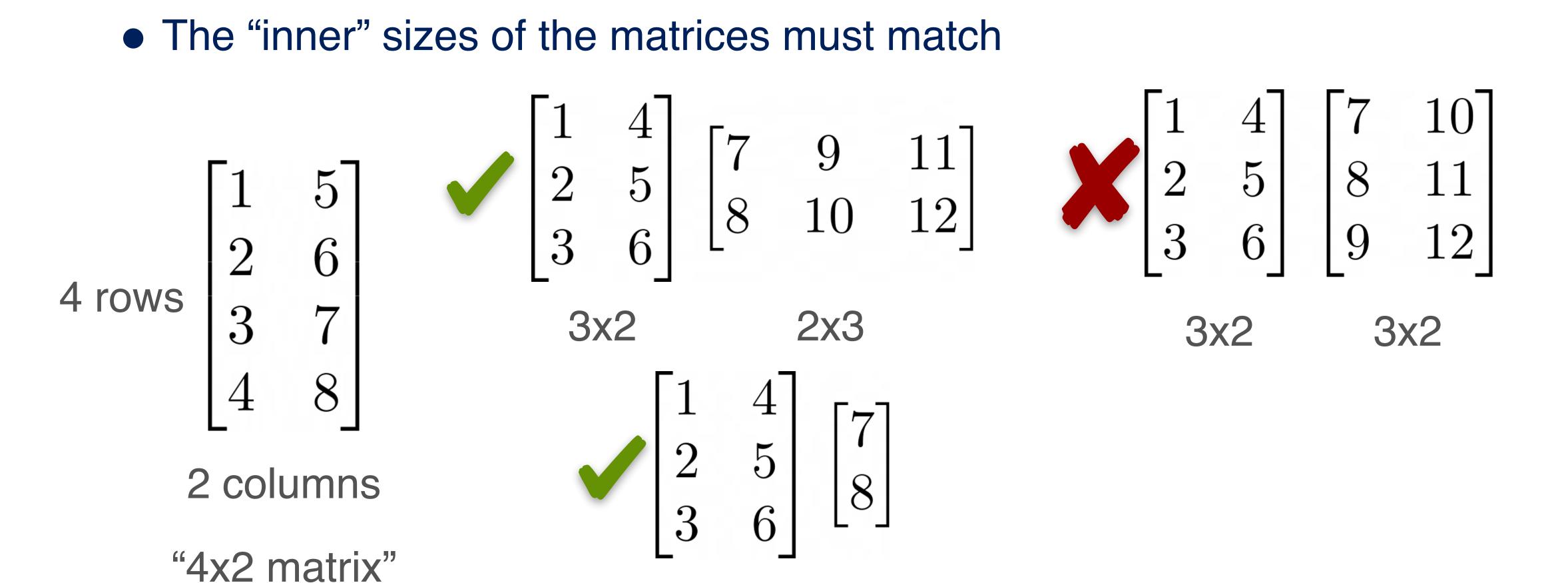
- Matrix multiplication is **not** commutative: $Ax \neq xA$



3x2

2x1

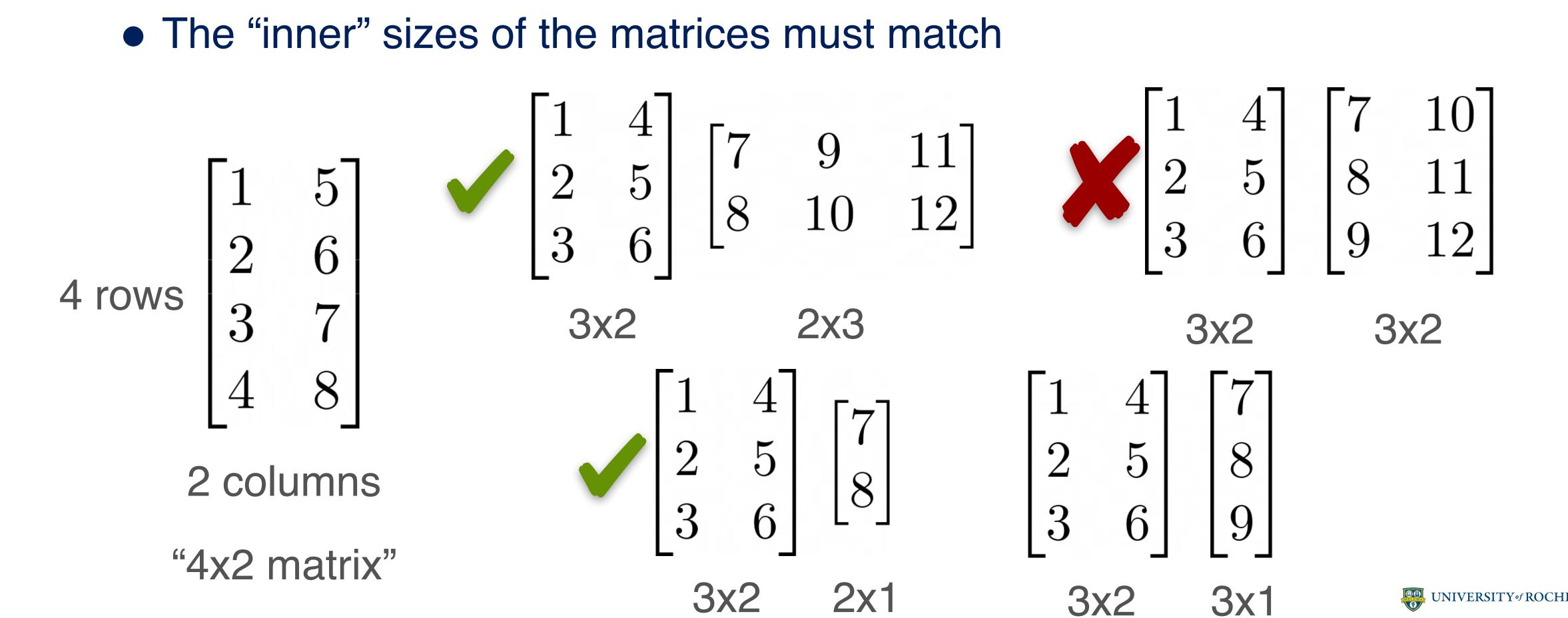
- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match



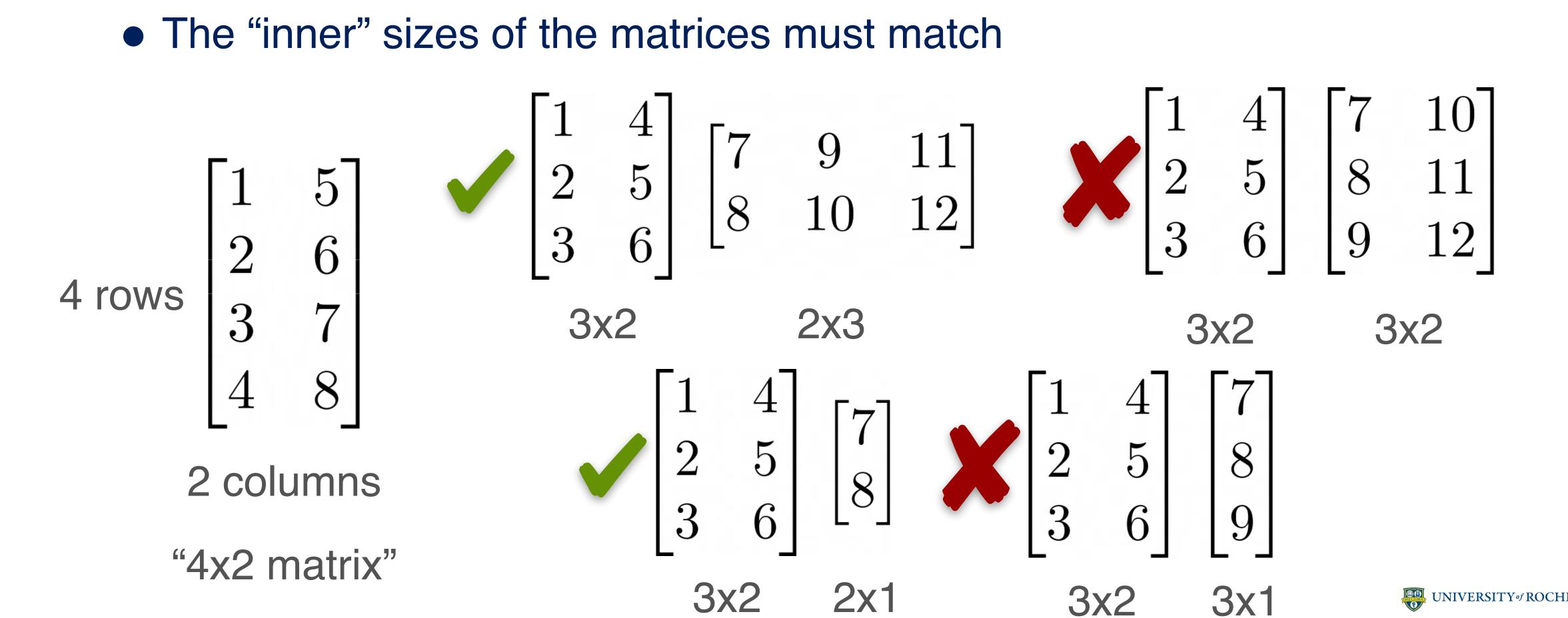
3x2

2x1

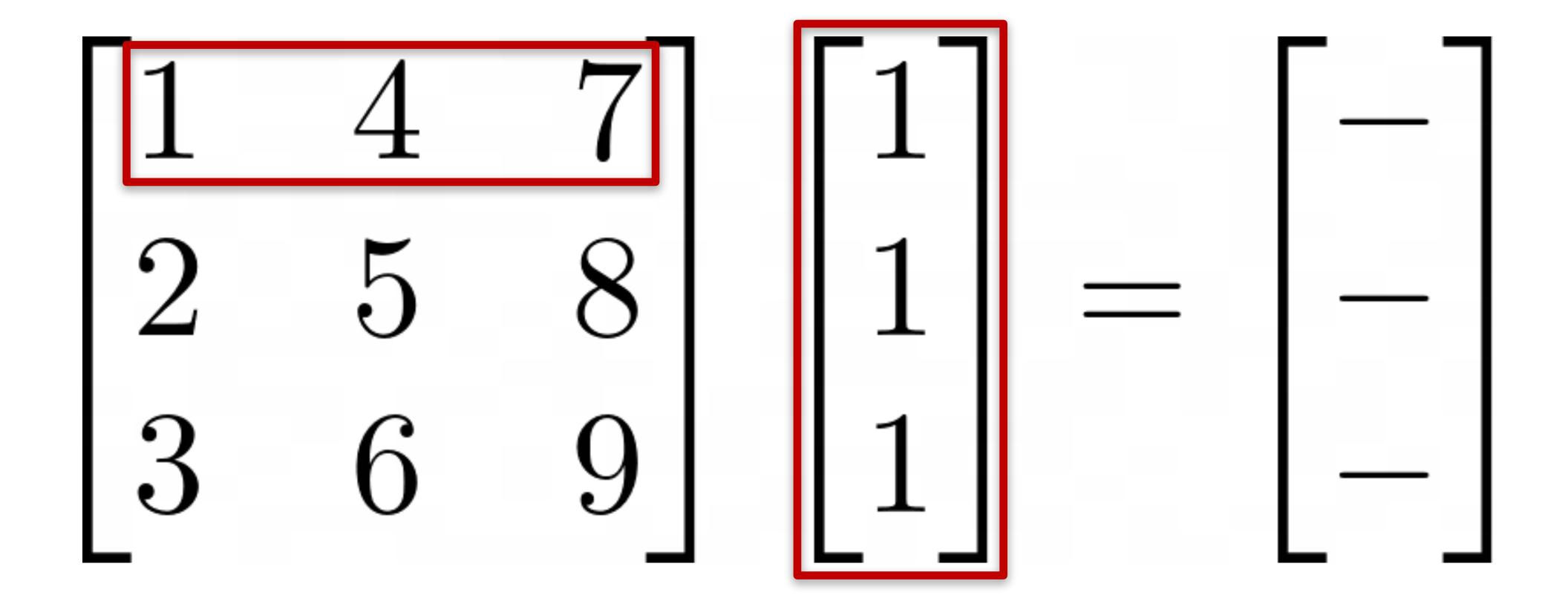
- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

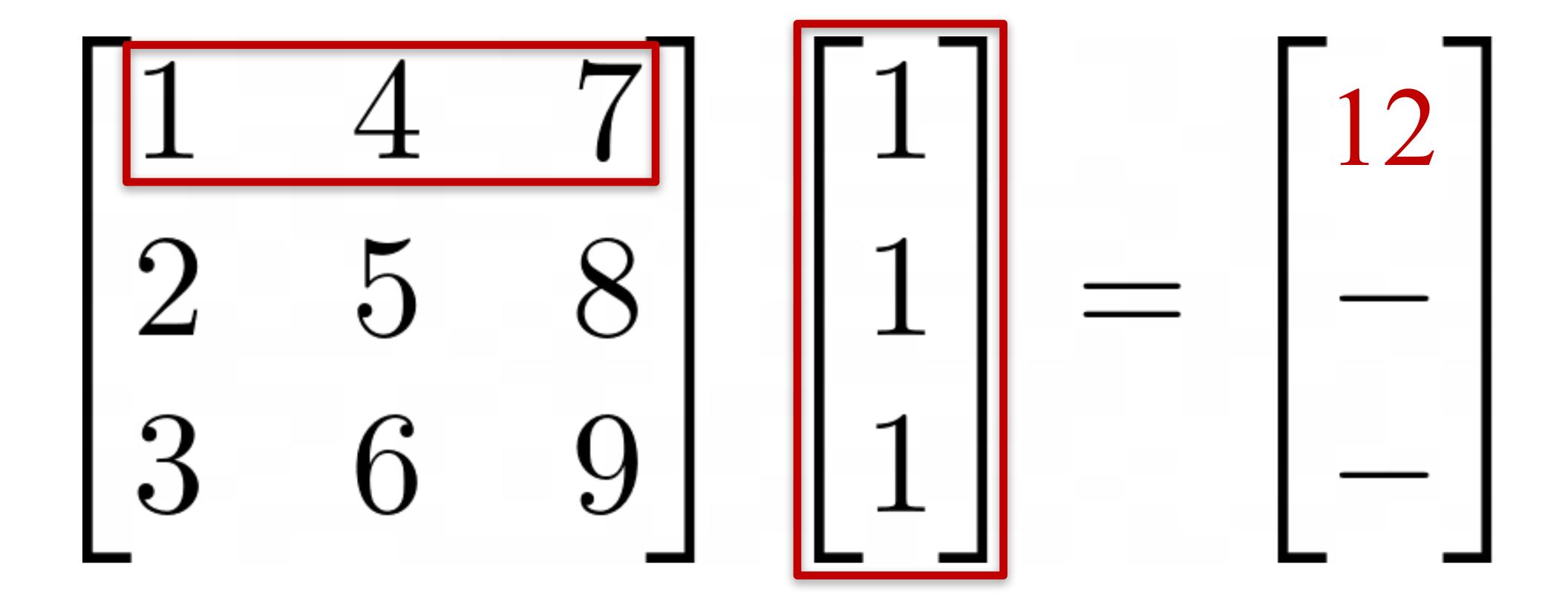


- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

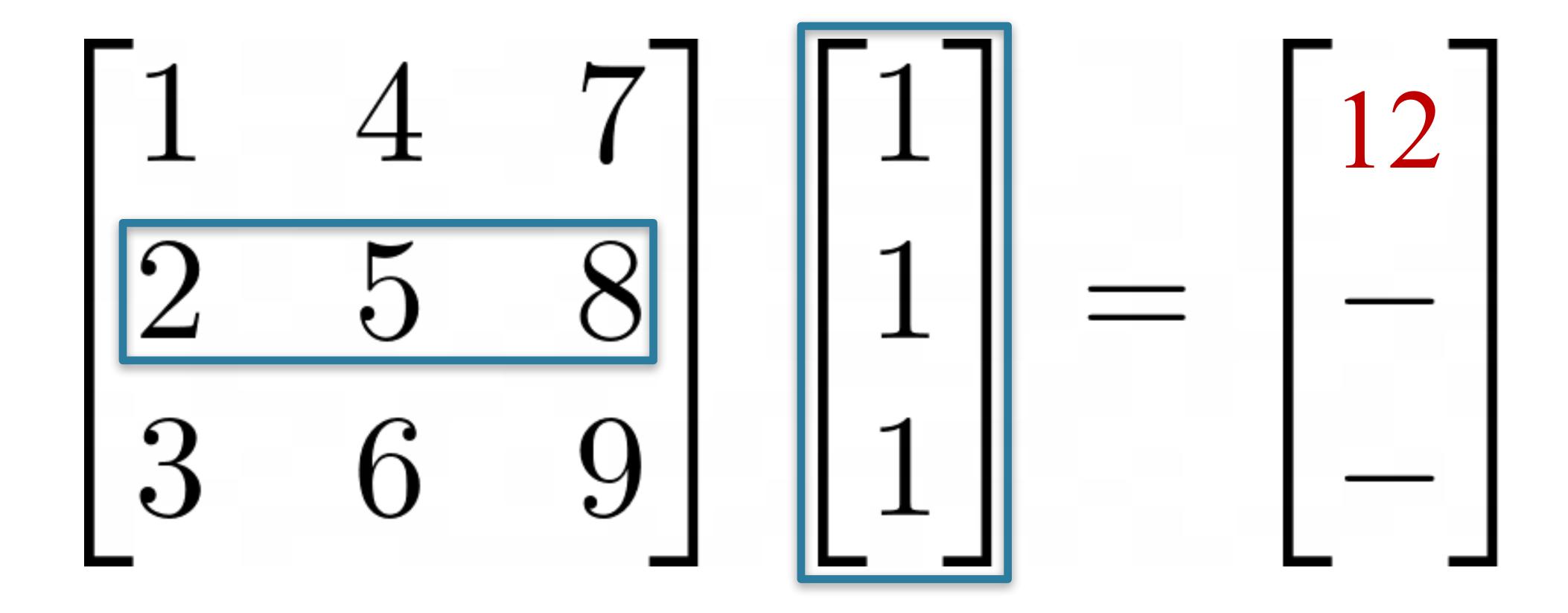


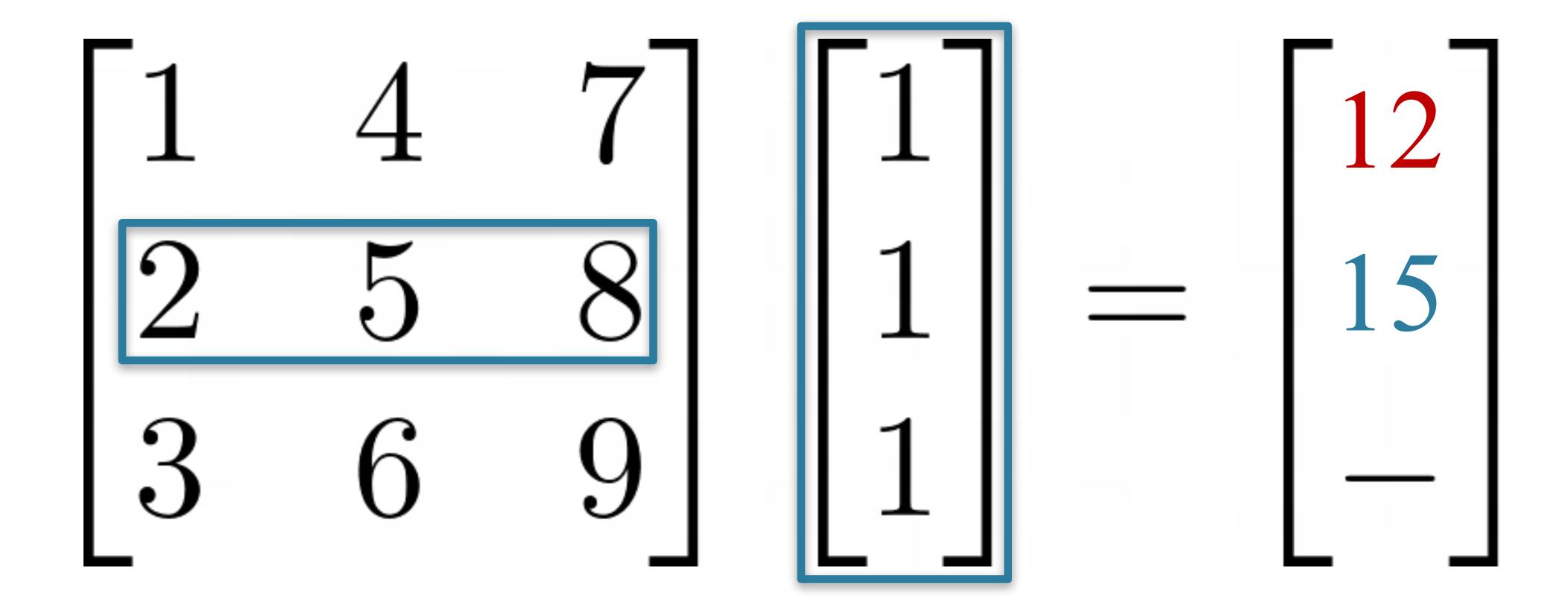
1	4	7	1	
2	5	8	1	
3	6	9	1	

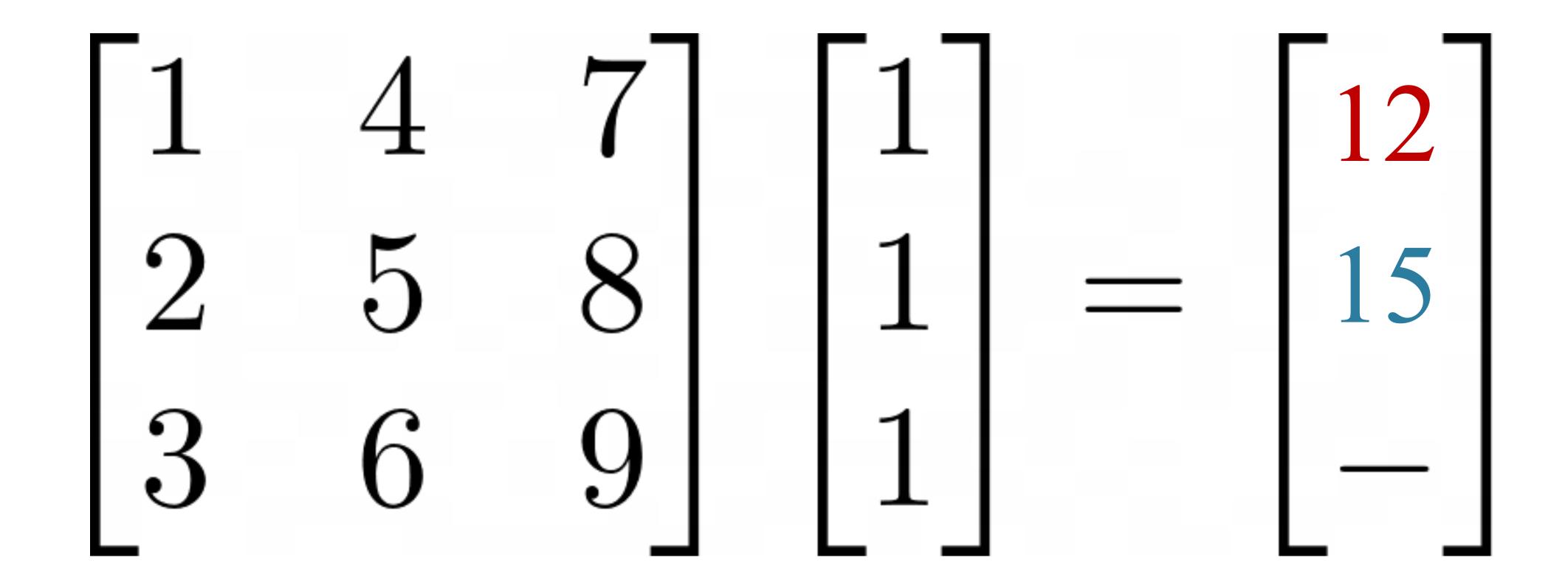


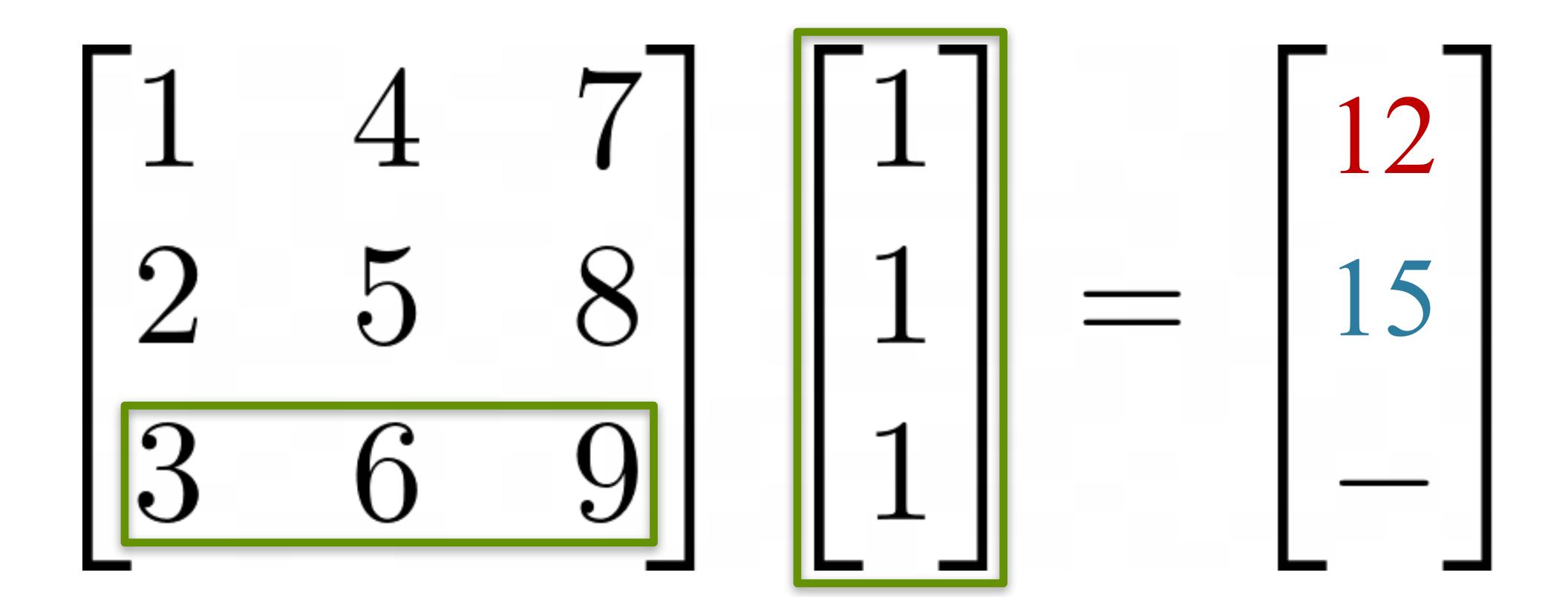


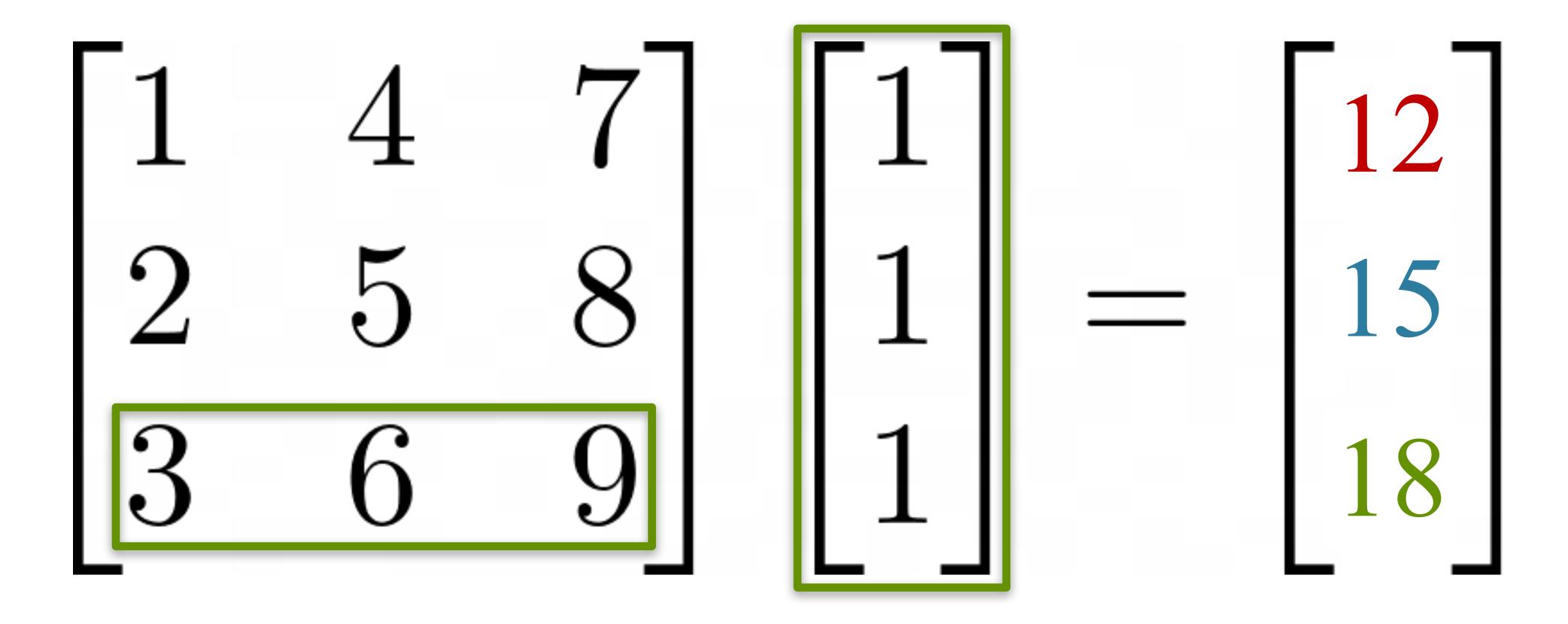
1	4	7	1	12
2	5	8	1	
3	6	9	1	











Alternative way to think about this multiplication

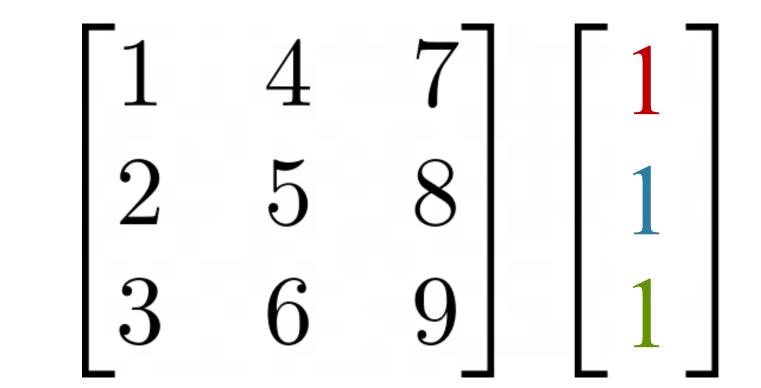
Alternative way to think about this multiplication

```
egin{bmatrix} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 \ \end{bmatrix} egin{bmatrix} 1 \ 1 \ 1 \ \end{bmatrix}
```

- Alternative way to think about this multiplication
 - The matrix consists of column vectors

```
egin{bmatrix} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 \end{bmatrix} egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}
```

- Alternative way to think about this multiplication
 - The matrix consists of column vectors
 - The vector provides the constants for a linear combination of the columns



- Alternative way to think about this multiplication
 - The matrix consists of column vectors
 - The vector provides the constants for a linear combination of the columns

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \longrightarrow 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 1 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + 1 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \\ 18 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \longrightarrow 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 1 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + 1 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \\ 18 \end{bmatrix}$$

What is the significance of this alternate view?

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \longrightarrow 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 1 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + 1 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \\ 18 \end{bmatrix}$$

- What is the significance of this alternate view?
 - For all Ax = b, b is expressed as a **linear combination** of A's columns, and so...

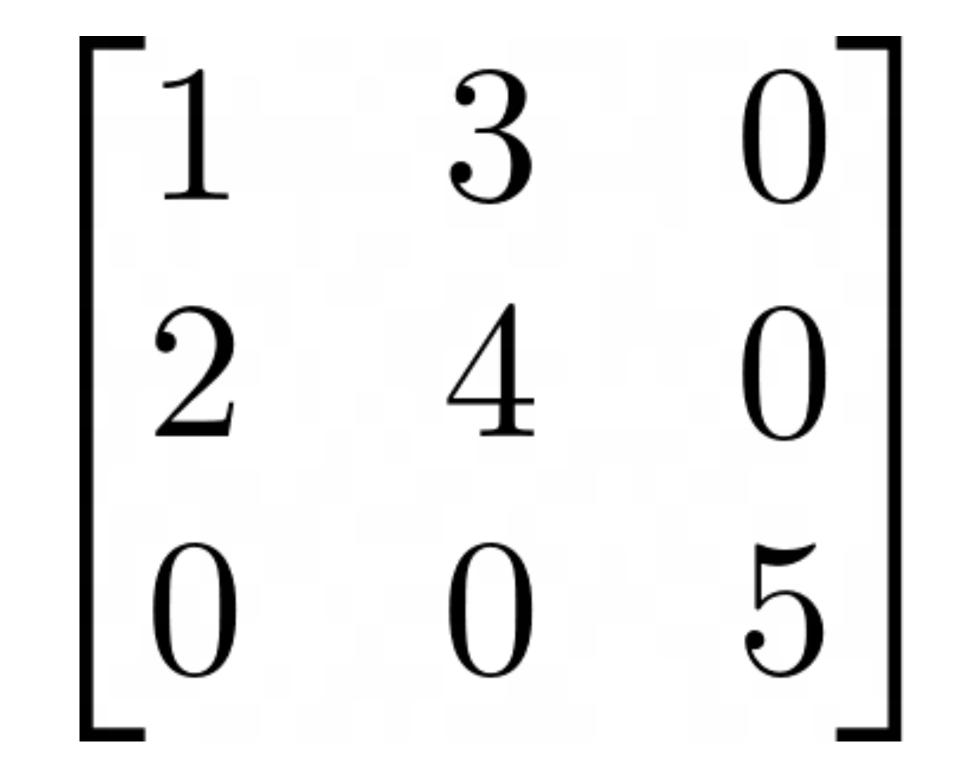
$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \longrightarrow 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 1 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + 1 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \\ 18 \end{bmatrix}$$

- What is the significance of this alternate view?
 - For all Ax = b, b is expressed as a **linear combination** of A's columns, and so...
 - ullet ...b is always in the span of A's columns

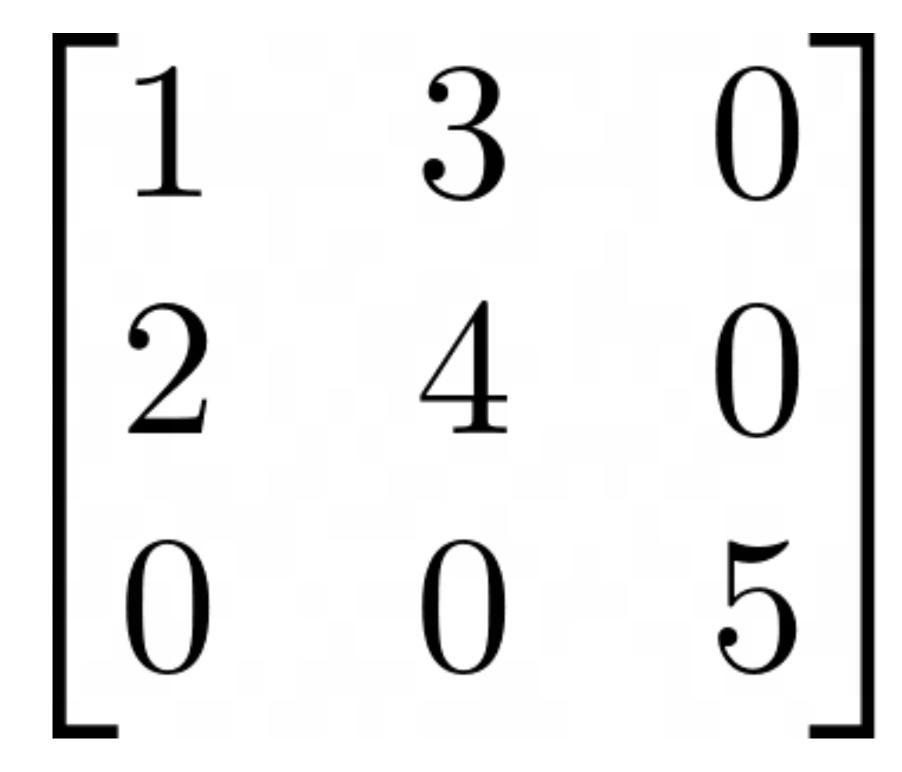
$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \longrightarrow 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 1 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + 1 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \\ 18 \end{bmatrix}$$

- What is the significance of this alternate view?
 - For all Ax = b, b is expressed as a **linear combination** of A's columns, and so...
 - ullet ...b is always in the span of A's columns
 - This is called the Column Space of A, C(A)

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \longrightarrow 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 1 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + 1 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \\ 18 \end{bmatrix}$$



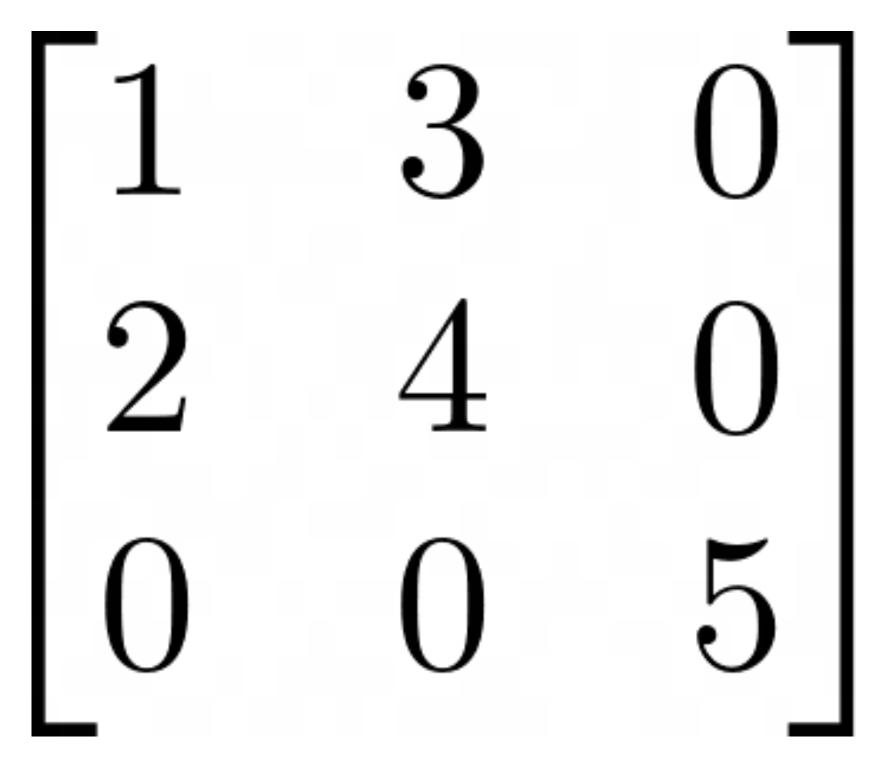
What can you tell about the Column Space of this matrix?



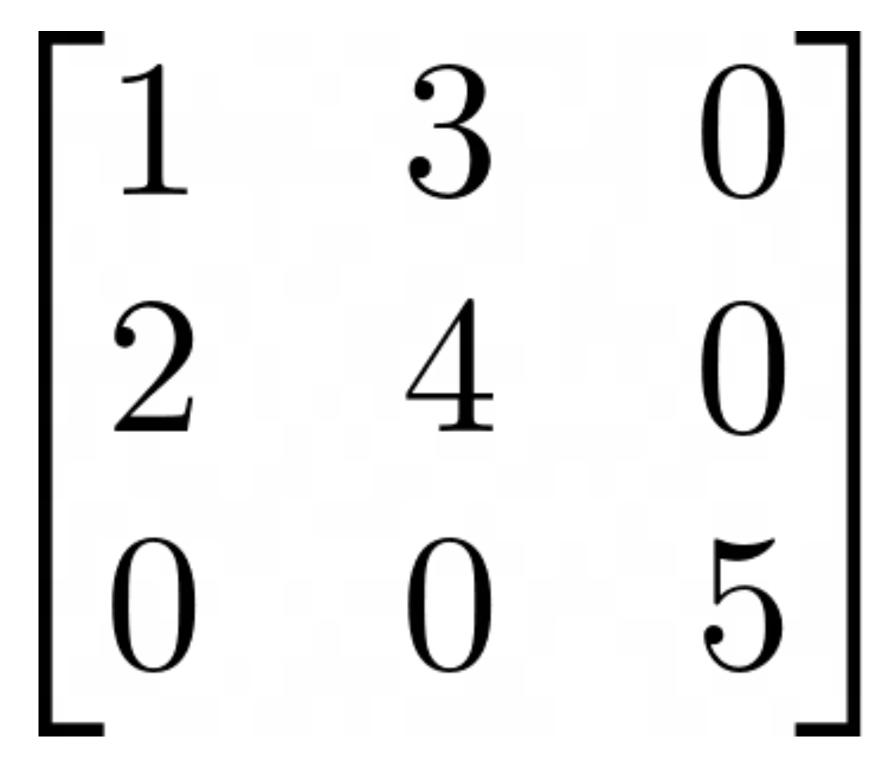
- What can you tell about the Column Space of this matrix?
 - 3 independent columns

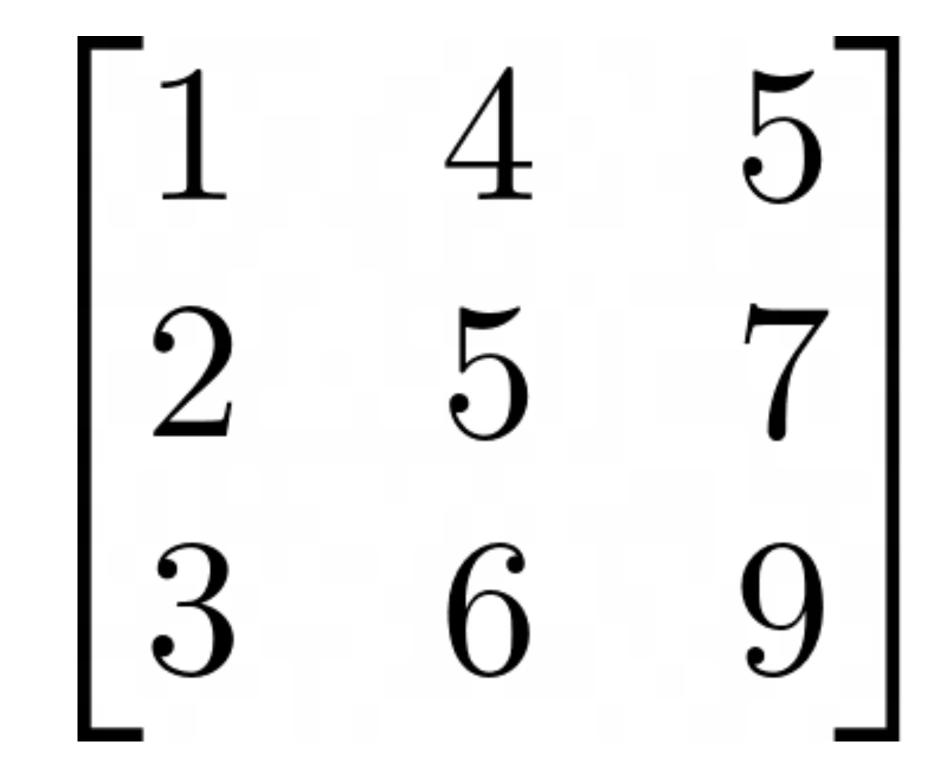


- What can you tell about the Column Space of this matrix?
 - 3 independent columns
 - C(A) spans R^3

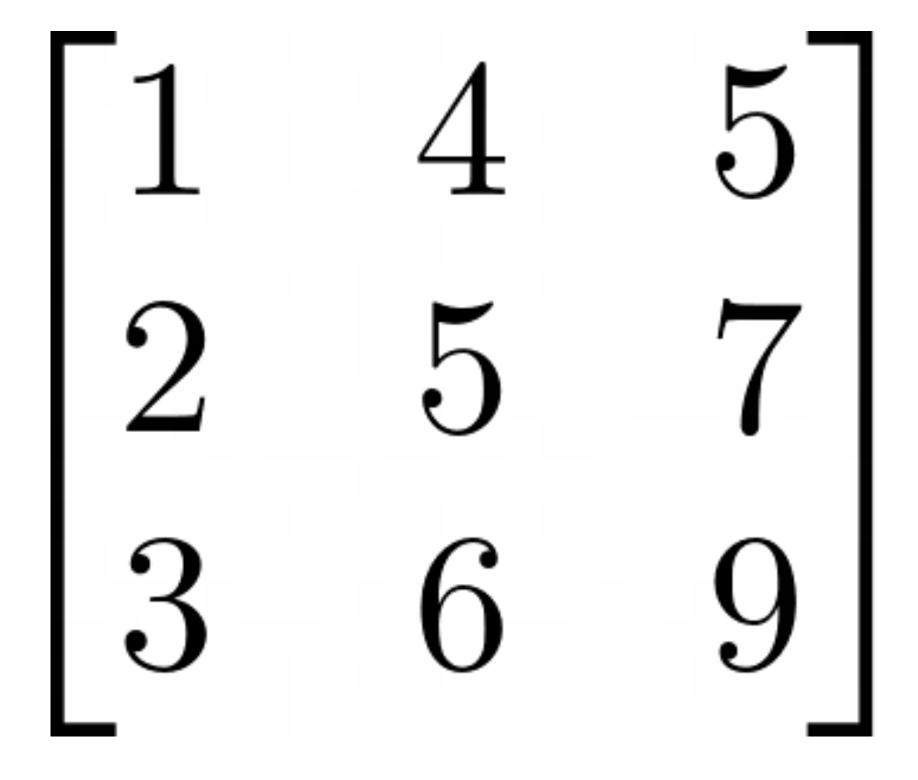


- What can you tell about the Column Space of this matrix?
 - 3 independent columns
 - C(A) spans R^3
 - Ax spans R^3





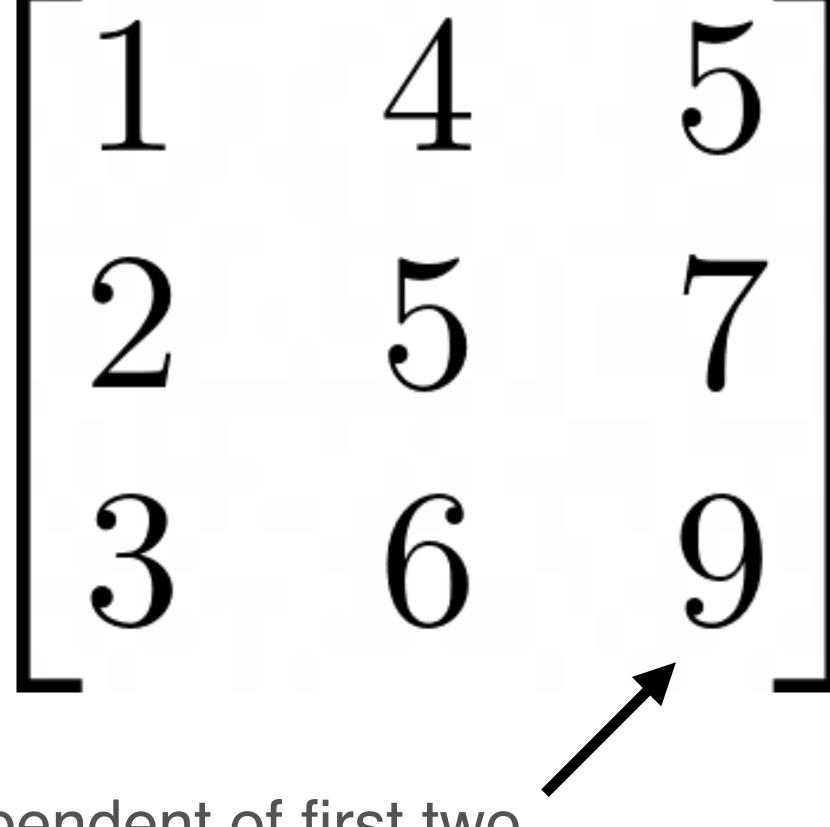
What can you tell about the Column Space of this matrix?



- What can you tell about the Column Space of this matrix?
 - 2 independent columns

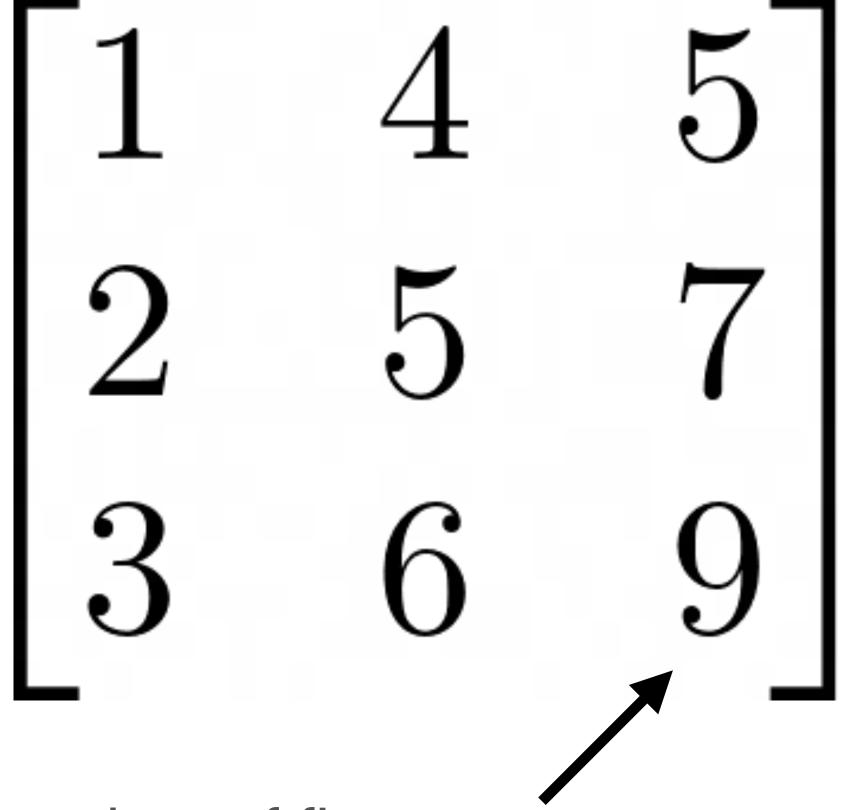
1	4	5
2	5	7
3	6	9

- What can you tell about the Column Space of this matrix?
 - 2 independent columns



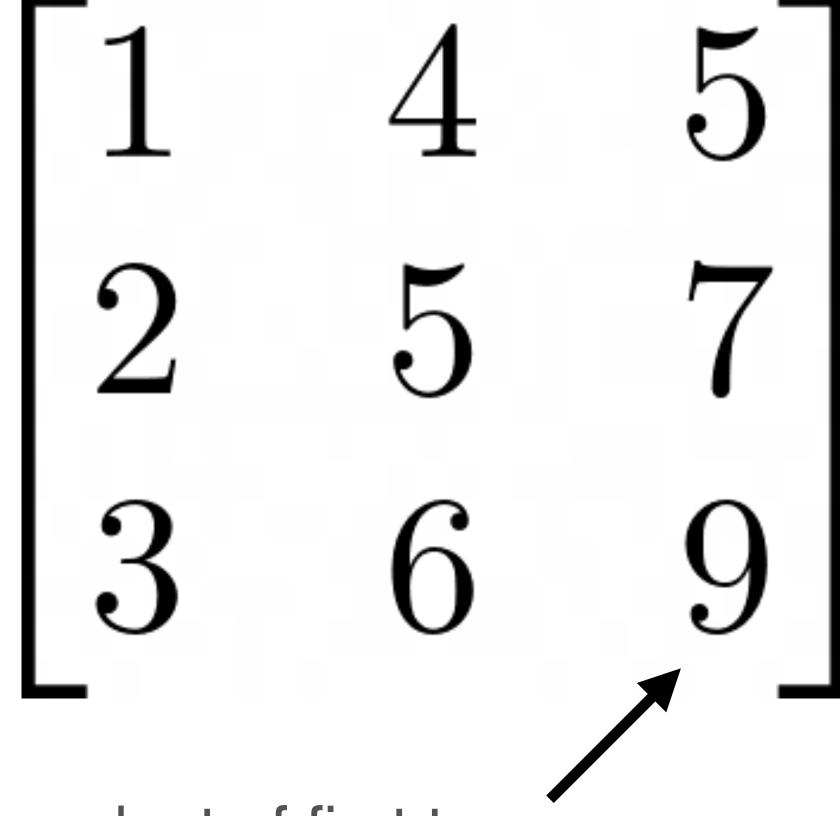
third column not independent of first two

- What can you tell about the Column Space of this matrix?
 - 2 independent columns
 - C(A) spans a 2D plane in R^3

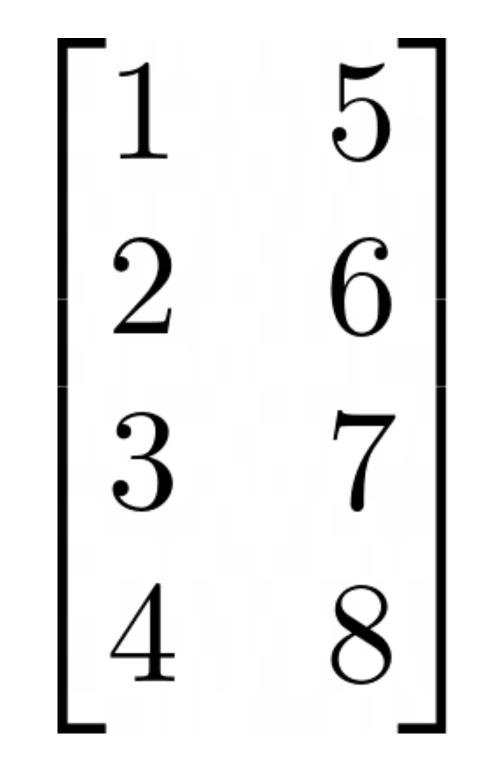


third column not independent of first two

- What can you tell about the Column Space of this matrix?
 - 2 independent columns
 - C(A) spans a 2D plane in R^3
 - Ax spans a 2D plane in R^3



third column not independent of first two



What can you tell about the Column Space of this matrix? What is the size

of "input" vector x?

1	5
2	6
3	7
4	8

• What can you tell about the Column Space of this matrix? What is the size

of "input" vector x?

• 2 independent columns

1	5
2	6
3	7
4	8

What can you tell about the Column Space of this matrix? What is the size

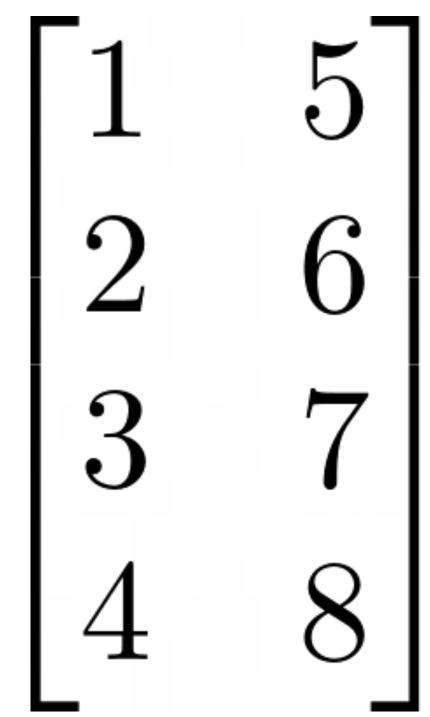
of "input" vector x?

• 2 independent columns

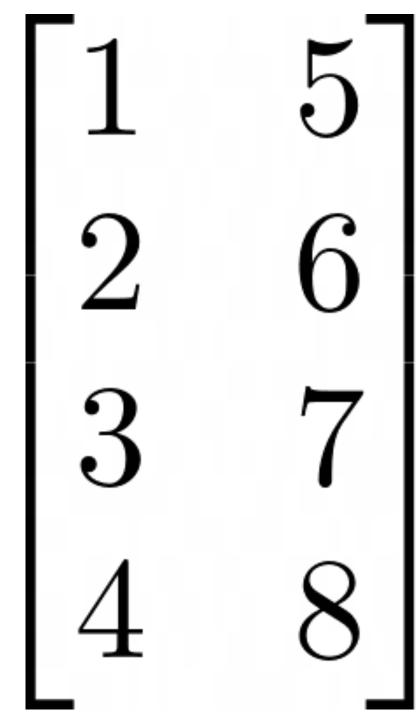
x is length 4

	5
2	6
3	7
4	8

- What can you tell about the Column Space of this matrix? What is the size
 - of "input" vector x?
 - 2 independent columns
 - x is length 4
 - C(A) spans a 2D plane in \mathbb{R}^4



- What can you tell about the Column Space of this matrix? What is the size
 - of "input" vector x?
 - 2 independent columns
 - x is length 4
 - C(A) spans a 2D plane in \mathbb{R}^4
 - Ax spans a 2D plane in R^4



• The number of independent columns in a matrix is called the rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
 - Rank 1: line

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
 - Rank 1: line
 - Rank 2: plane

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: 3D hyperplane

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: 3D hyperplane
 - etc.

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: 3D hyperplane
 - etc.
- MxN matrix can be considered a **function** from \mathbb{R}^N to \mathbb{R}^M

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: 3D hyperplane
 - etc.
- ullet MxN matrix can be considered a **function** from R^N to R^M
 - ullet However, the function's range may not span \mathbb{R}^M , unless it is rank M

Linear Transformations

ullet The Identity Matrix I always returns the **same vector/matrix** it's multiplied with

- ullet The Identity Matrix I always returns the **same vector/matrix** it's multiplied with
 - e.g. Ix = x and IA = A

- ullet The Identity Matrix I always returns the **same vector/matrix** it's multiplied with
 - e.g. Ix = x and IA = A

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- ullet The Identity Matrix I always returns the **same vector/matrix** it's multiplied with
 - e.g. Ix = x and IA = A

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- ullet The Identity Matrix I always returns the **same vector/matrix** it's multiplied with
 - e.g. Ix = x and IA = A
 - Where have we seen these columns before?

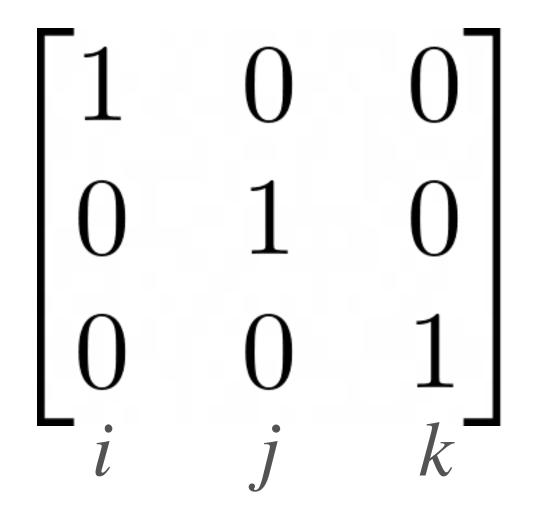
$$egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 1 \ 0 & 0 \ 1 \ \end{bmatrix}$$

- ullet The Identity Matrix I always returns the **same vector/matrix** it's multiplied with
 - e.g. Ix = x and IA = A
 - Where have we seen these columns before?

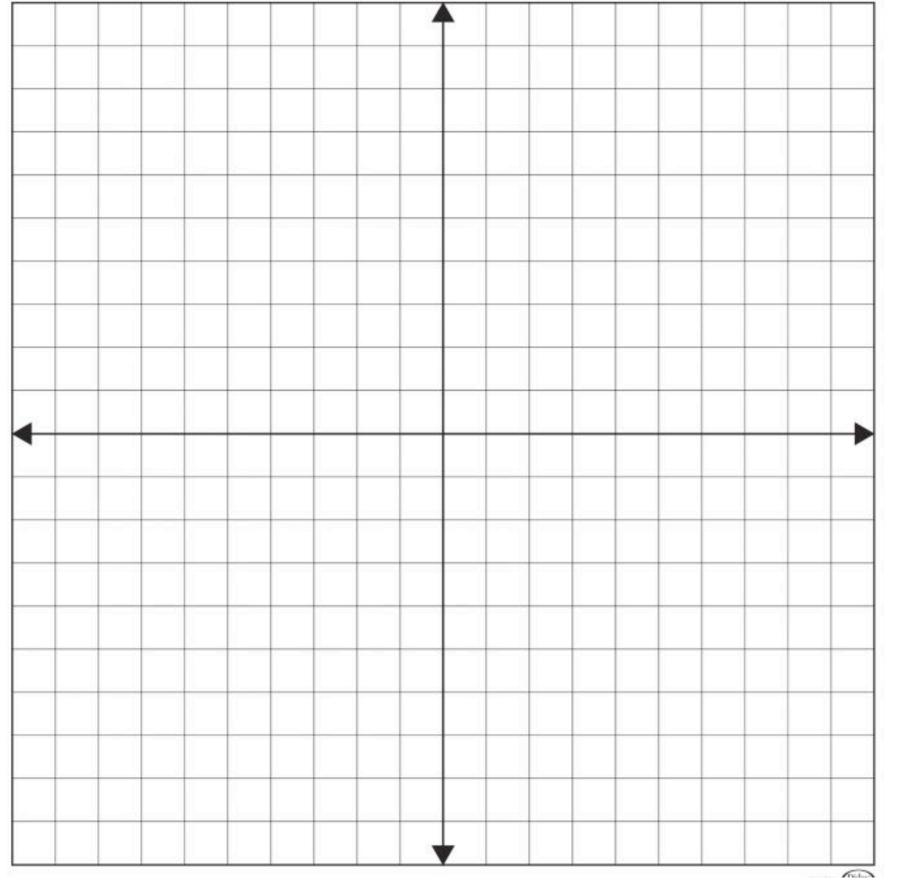
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- ullet The Identity Matrix I always returns the **same vector/matrix** it's multiplied with
 - e.g. Ix = x and IA = A
 - Where have we seen these columns before?

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



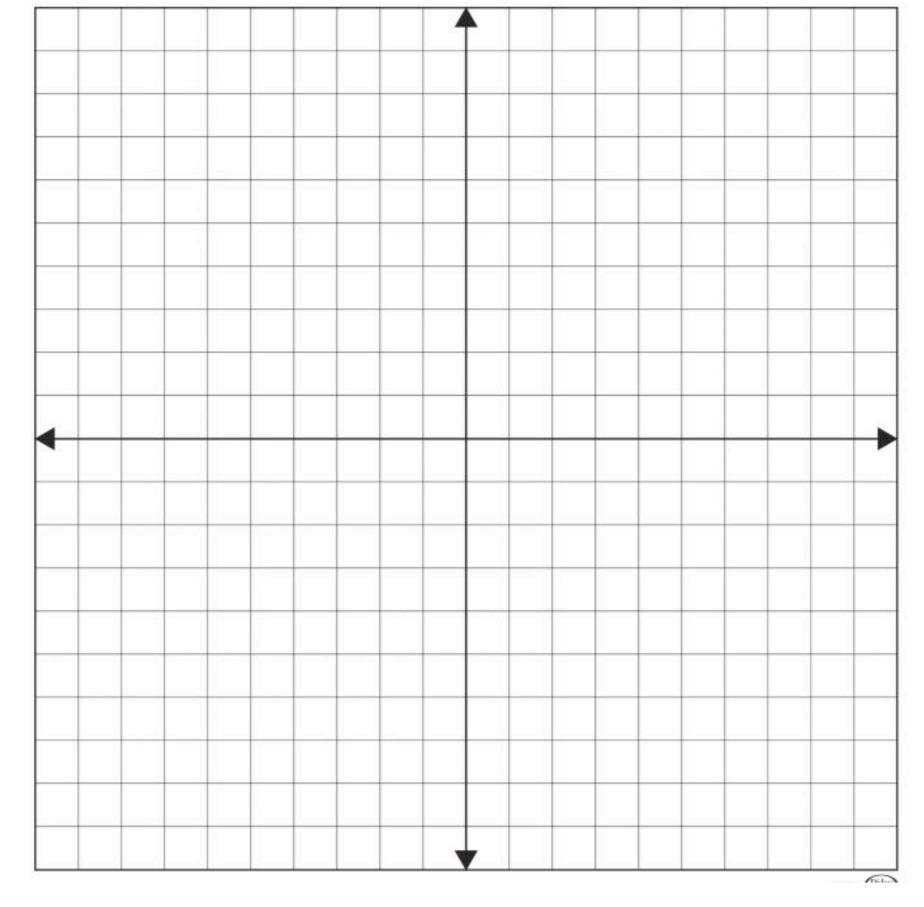
$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$



Vectors can be viewed as being composed of the Standard Basis

vectors

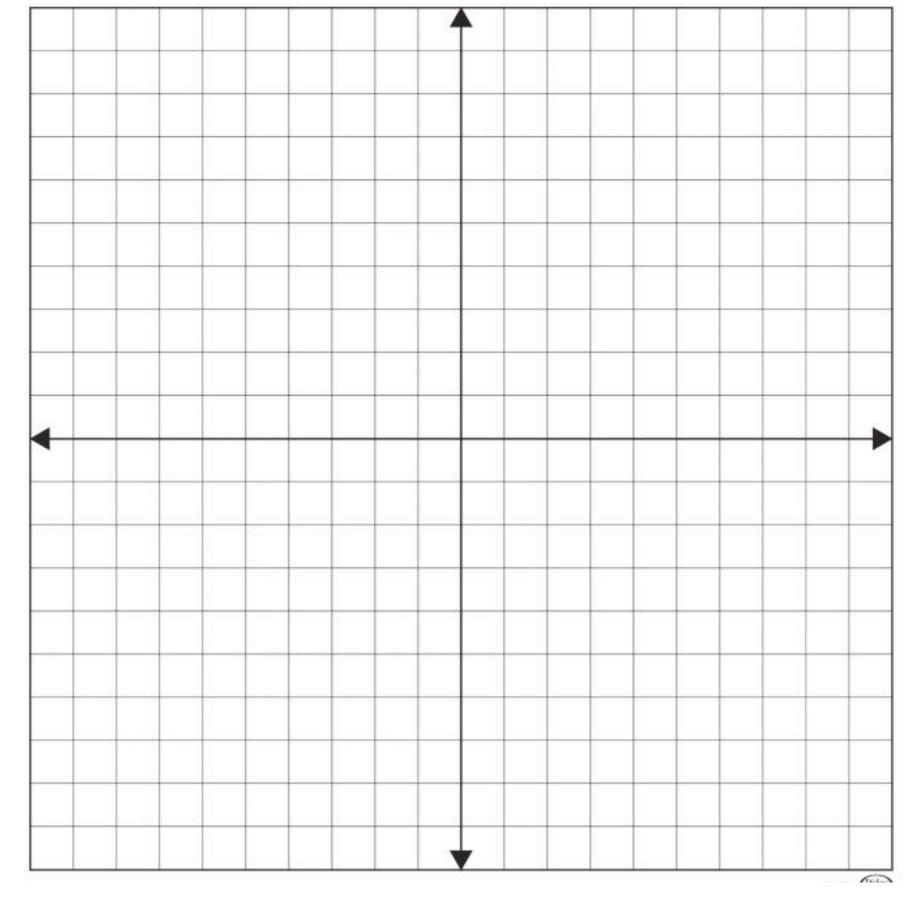
$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$



Vectors can be viewed as being composed of the Standard Basis

vectors

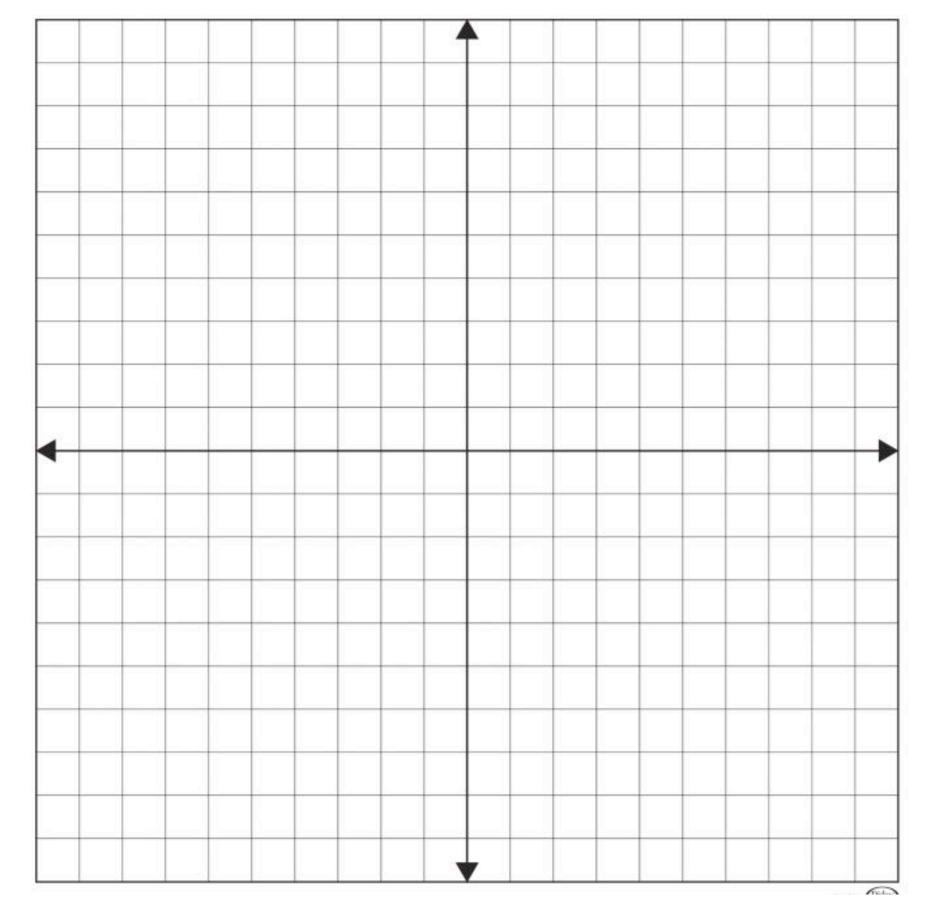
$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$



Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

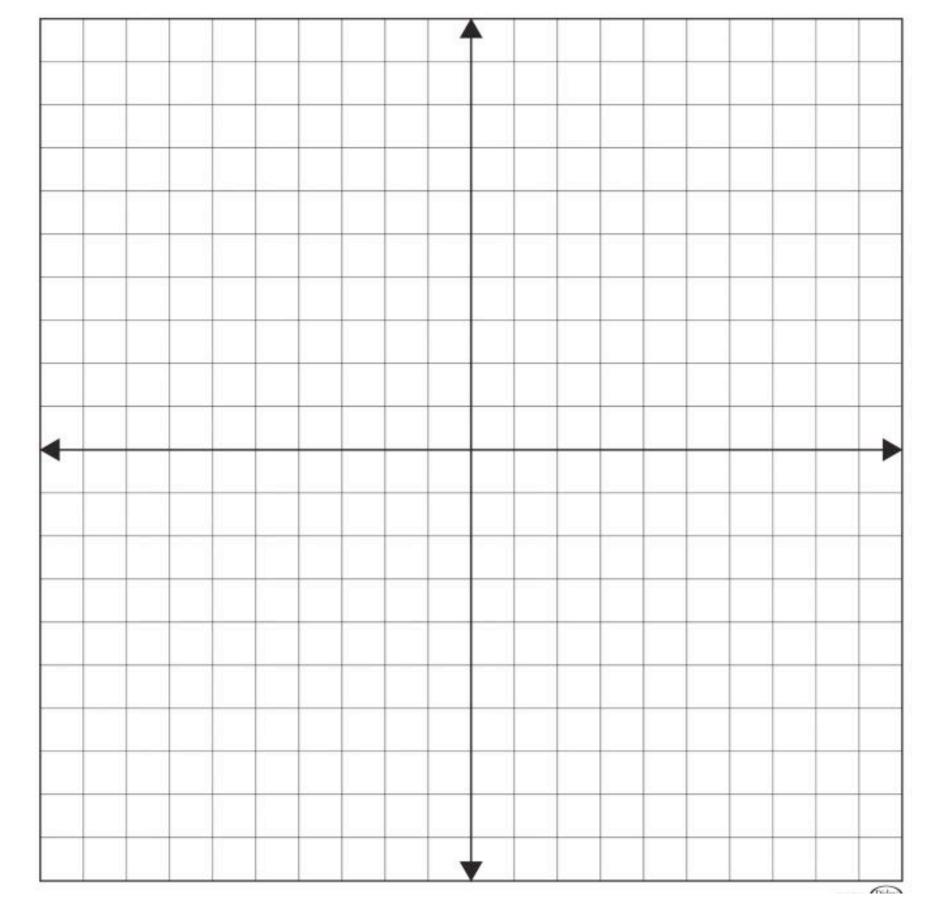


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

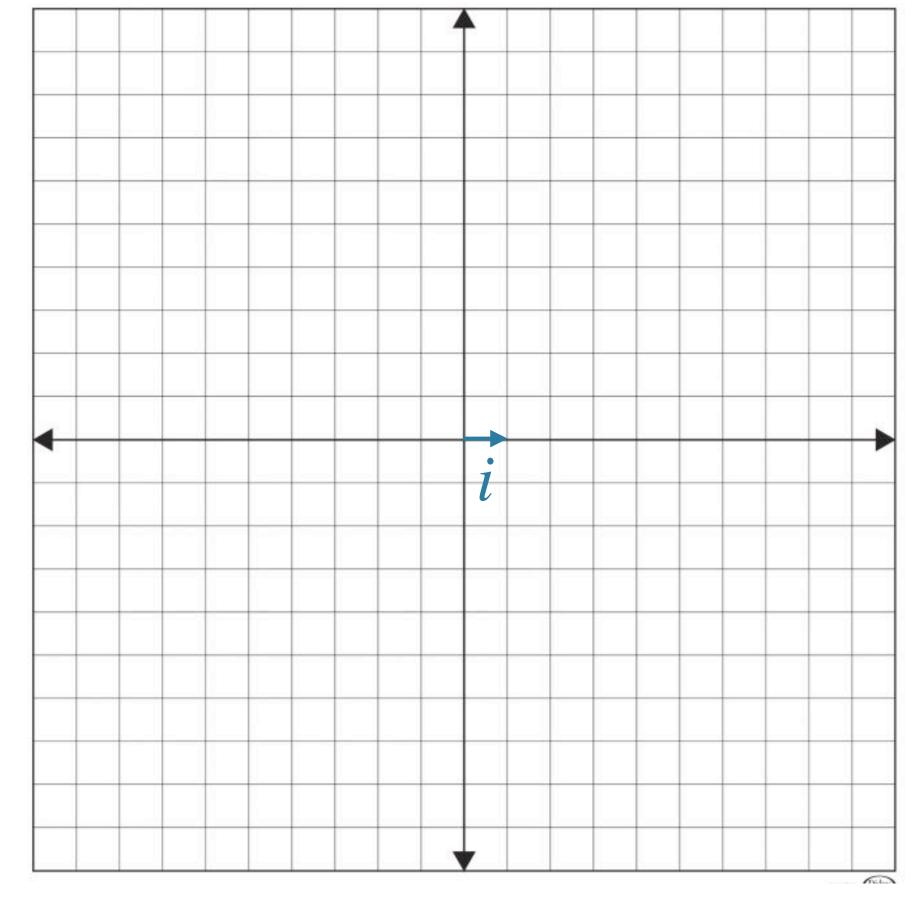


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

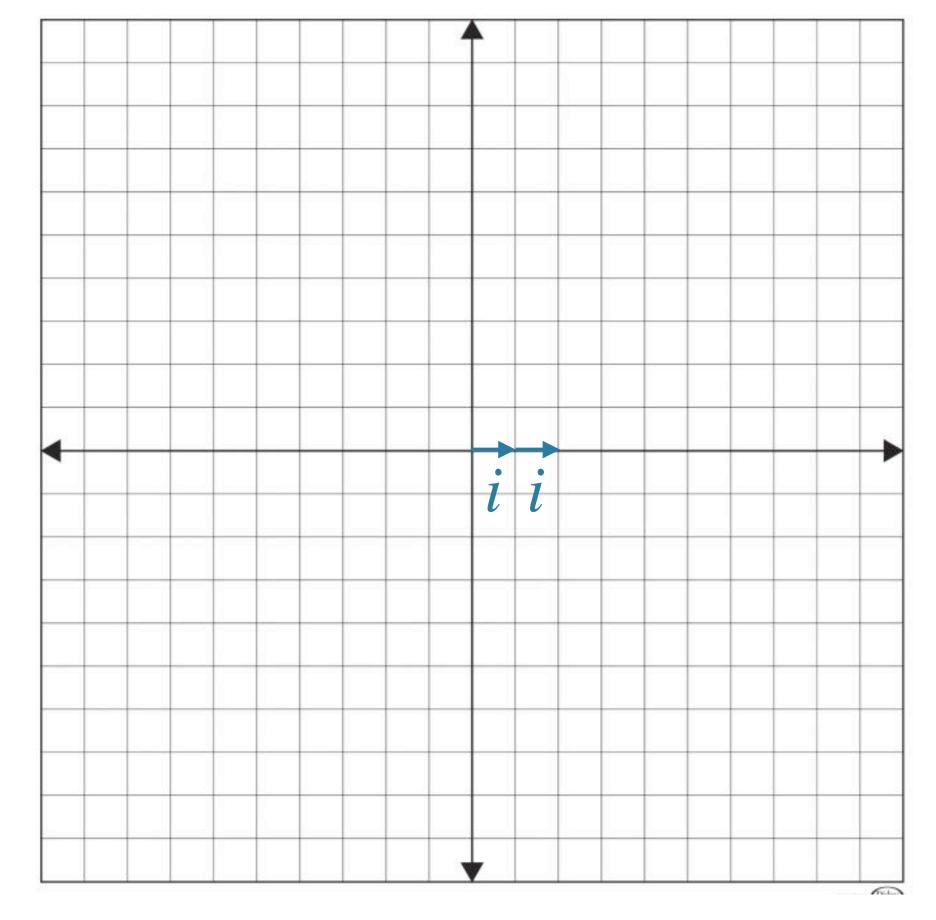


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

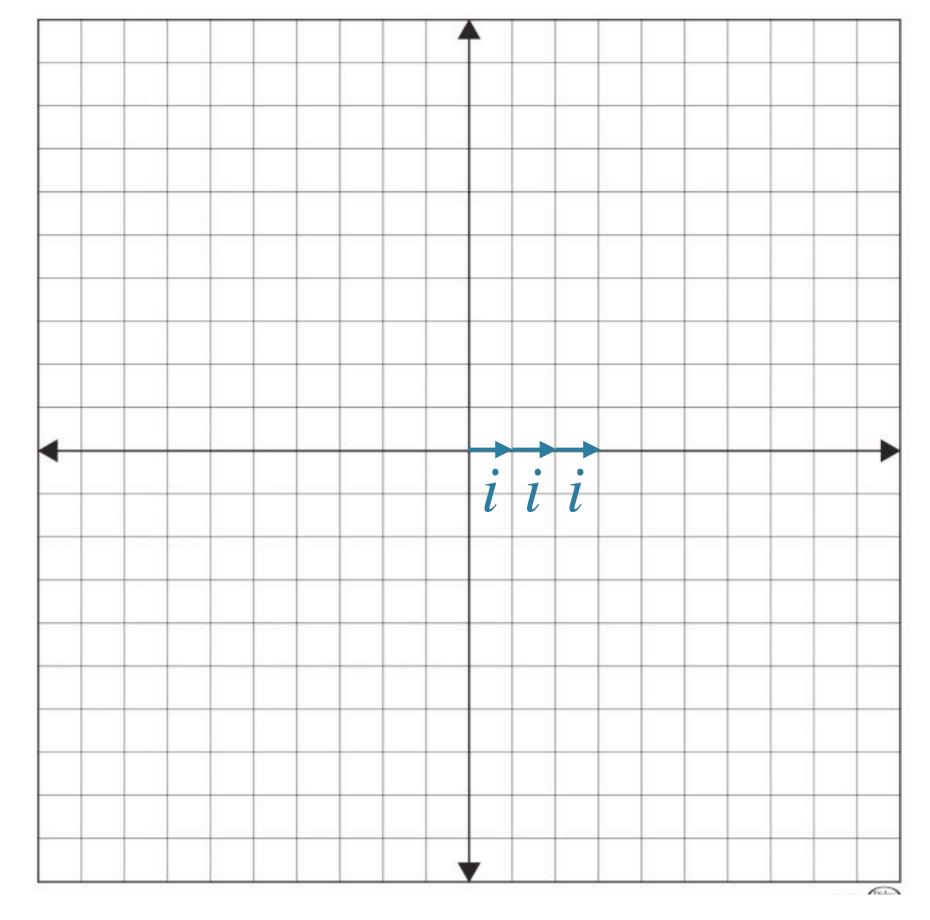


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

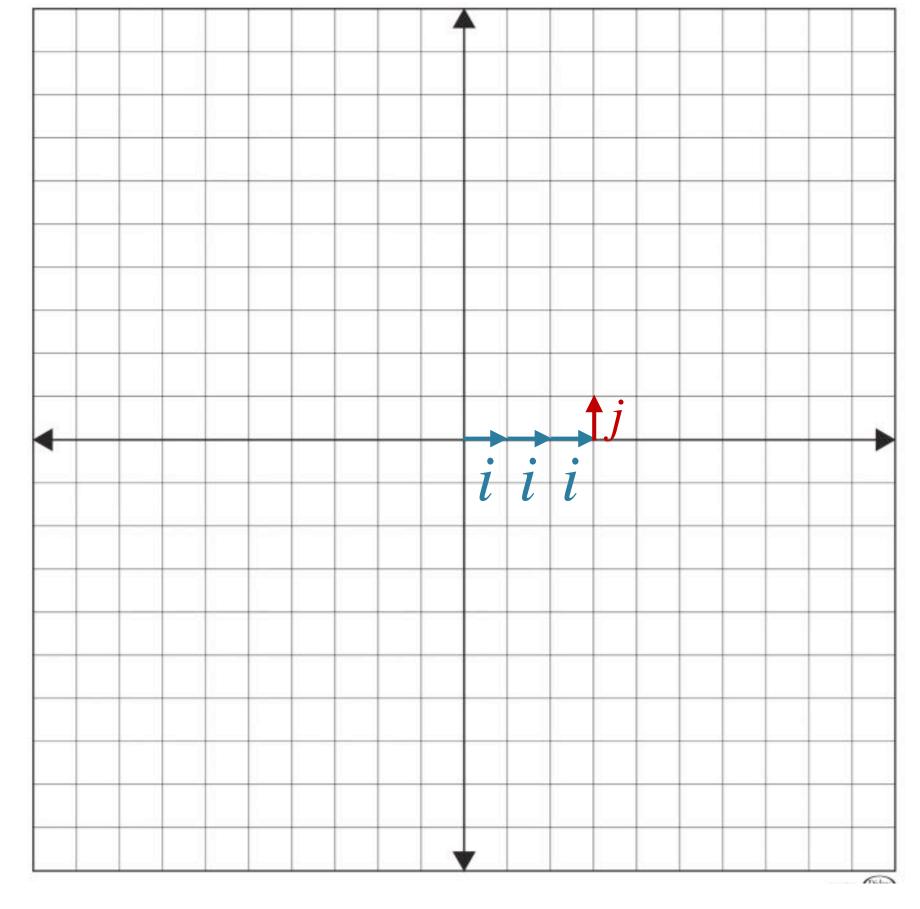


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

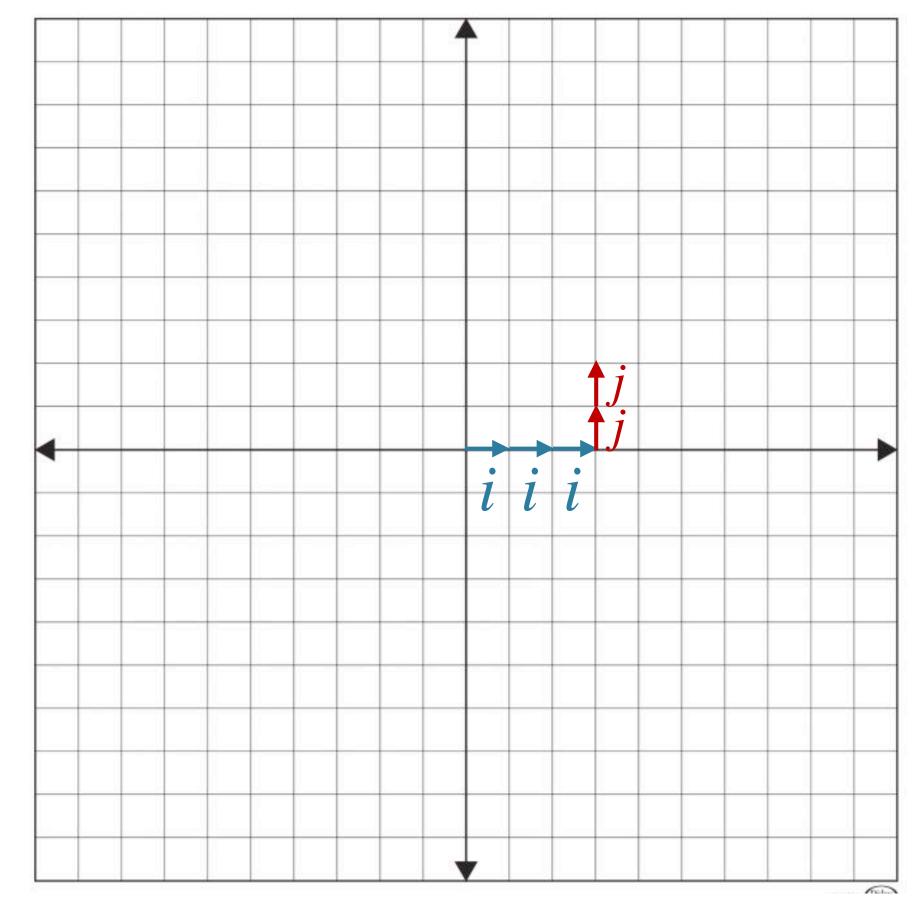


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

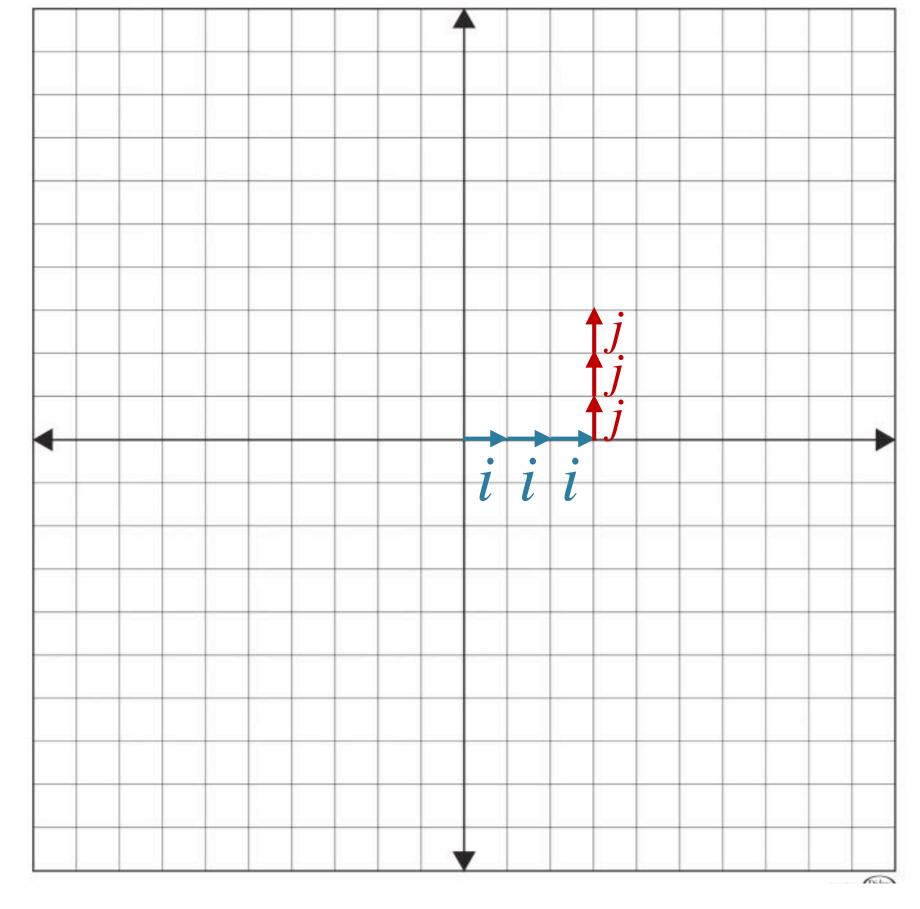


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

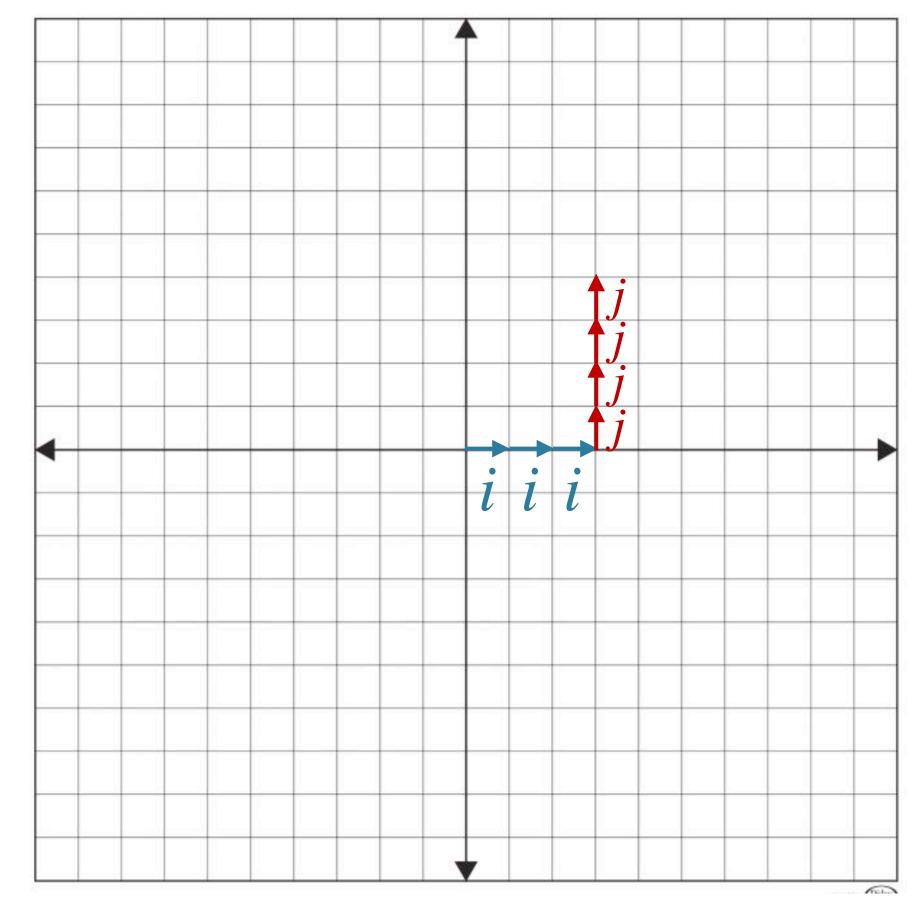


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$

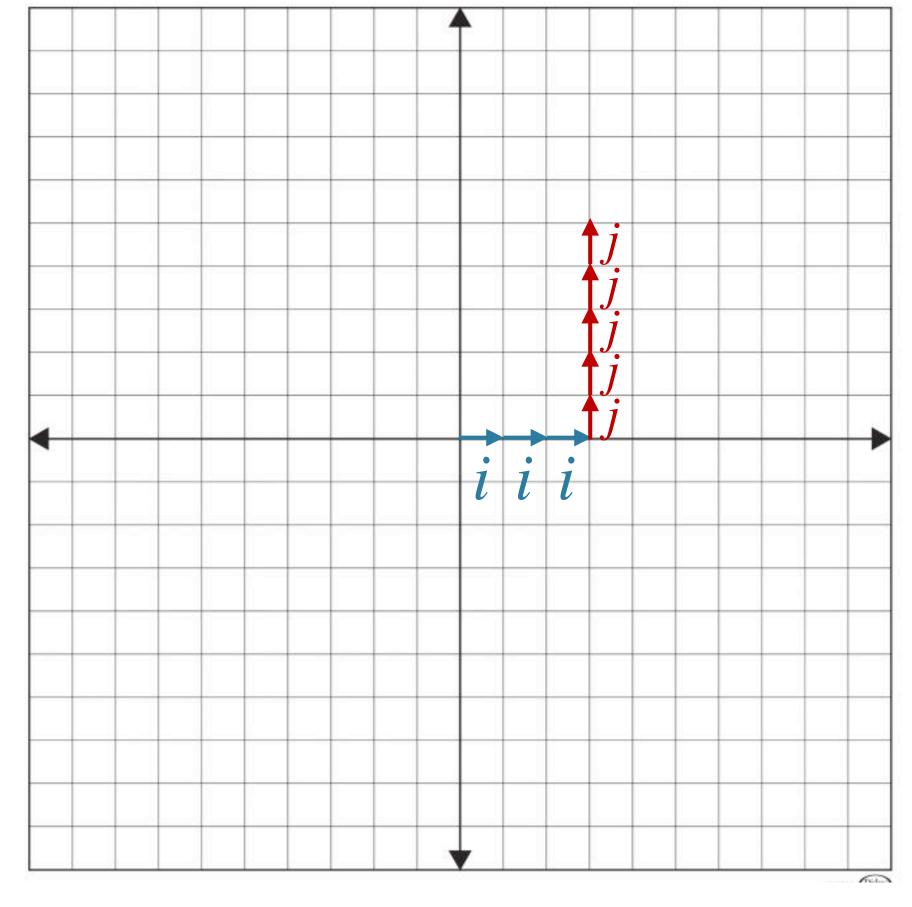


Vectors can be viewed as being composed of the Standard Basis

vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$i \qquad j$$



Identity Matrix as a Basis

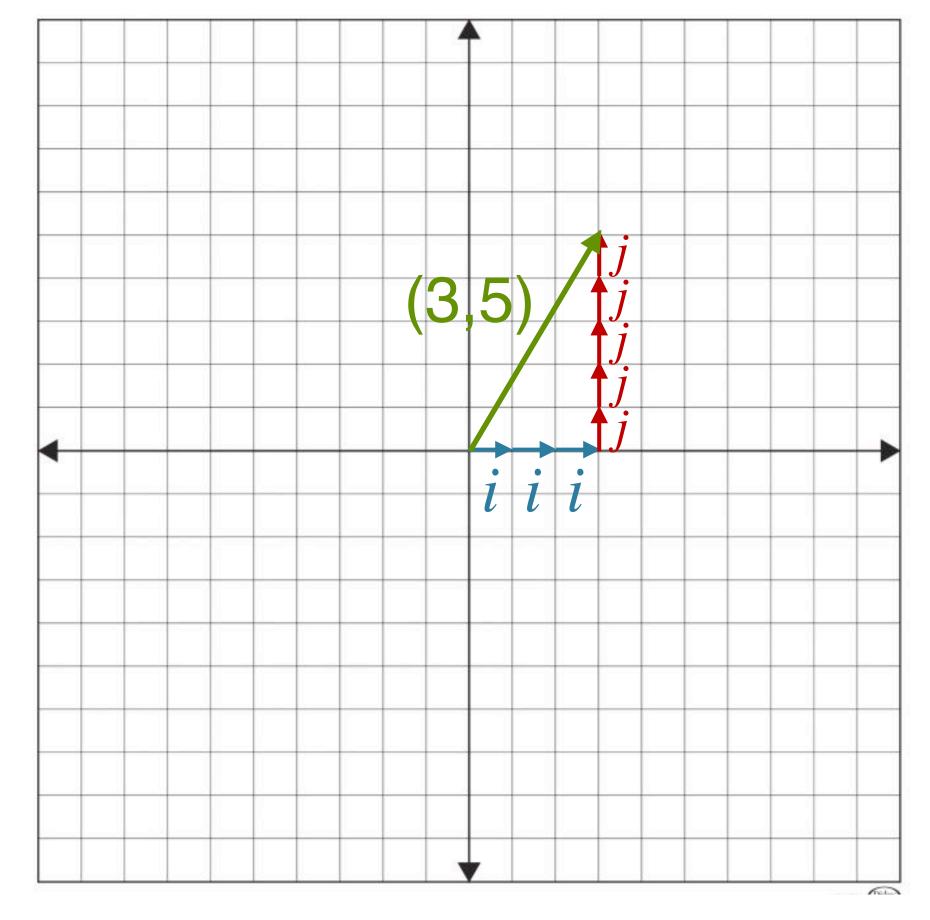
Vectors can be viewed as being composed of the Standard Basis

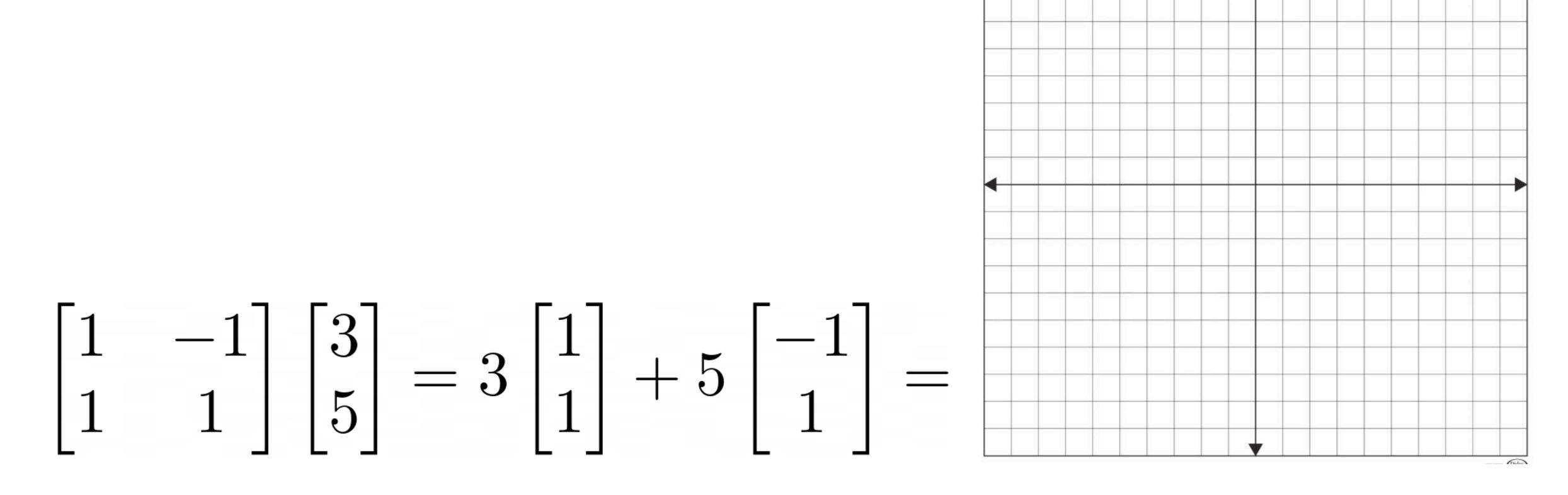
vectors

A vector is a linear combination of this basis

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

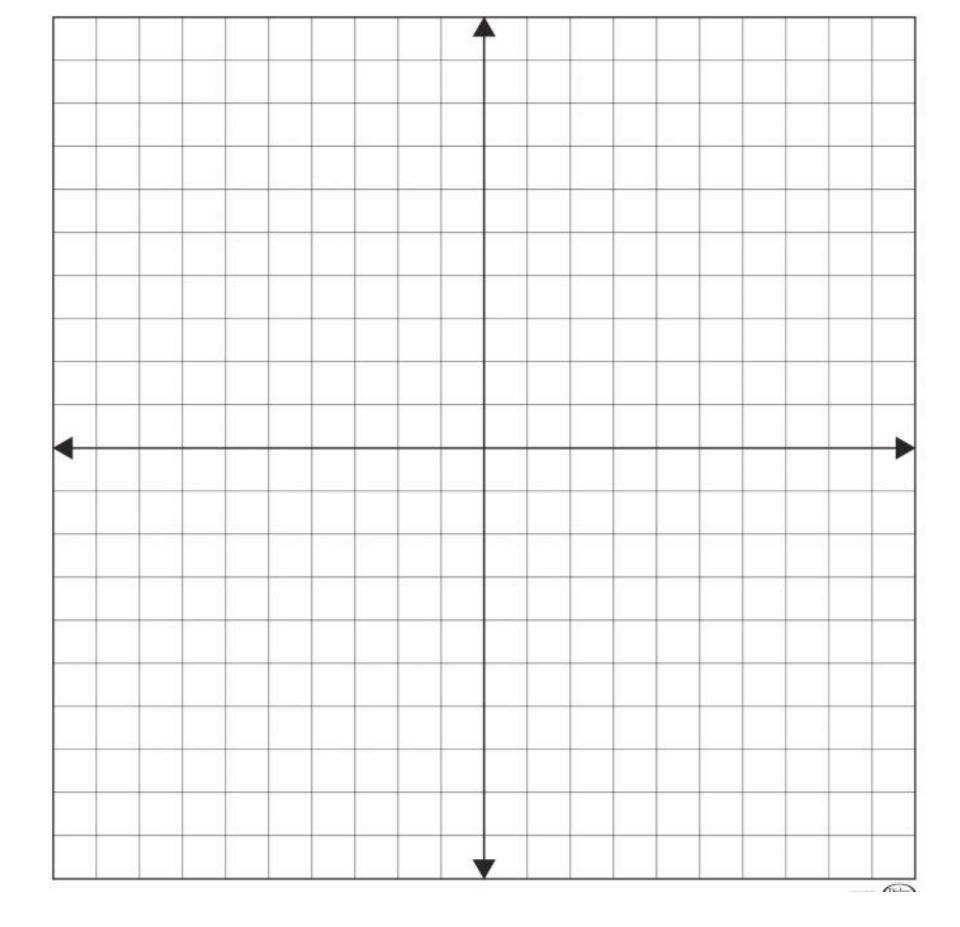
$$i \qquad j$$





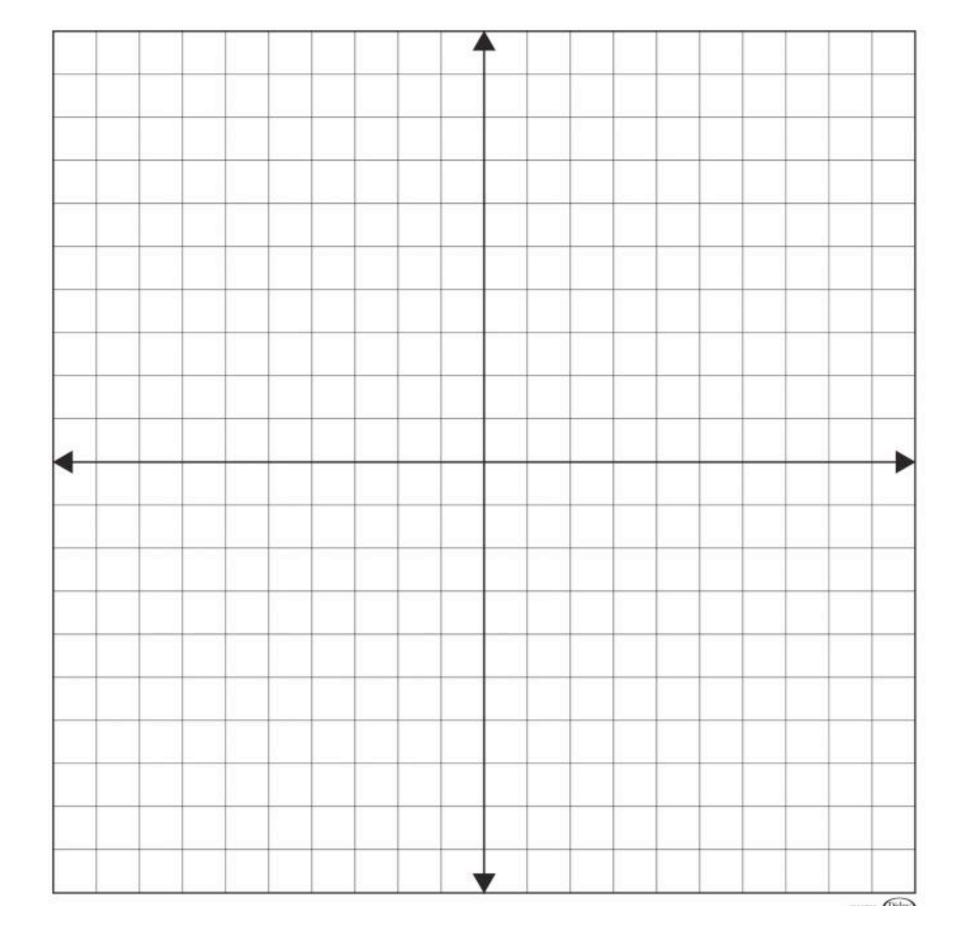
 Multiplying by a matrix converts a vector to a new basis

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$



- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$



- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

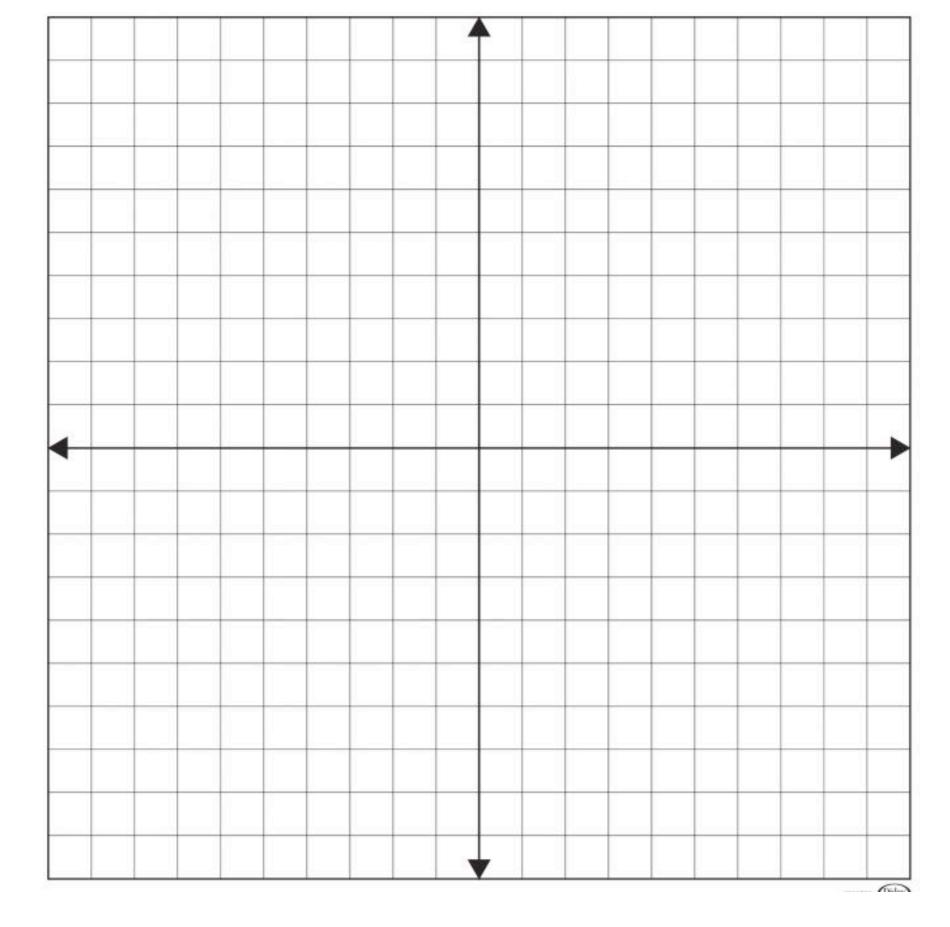
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$



new basis

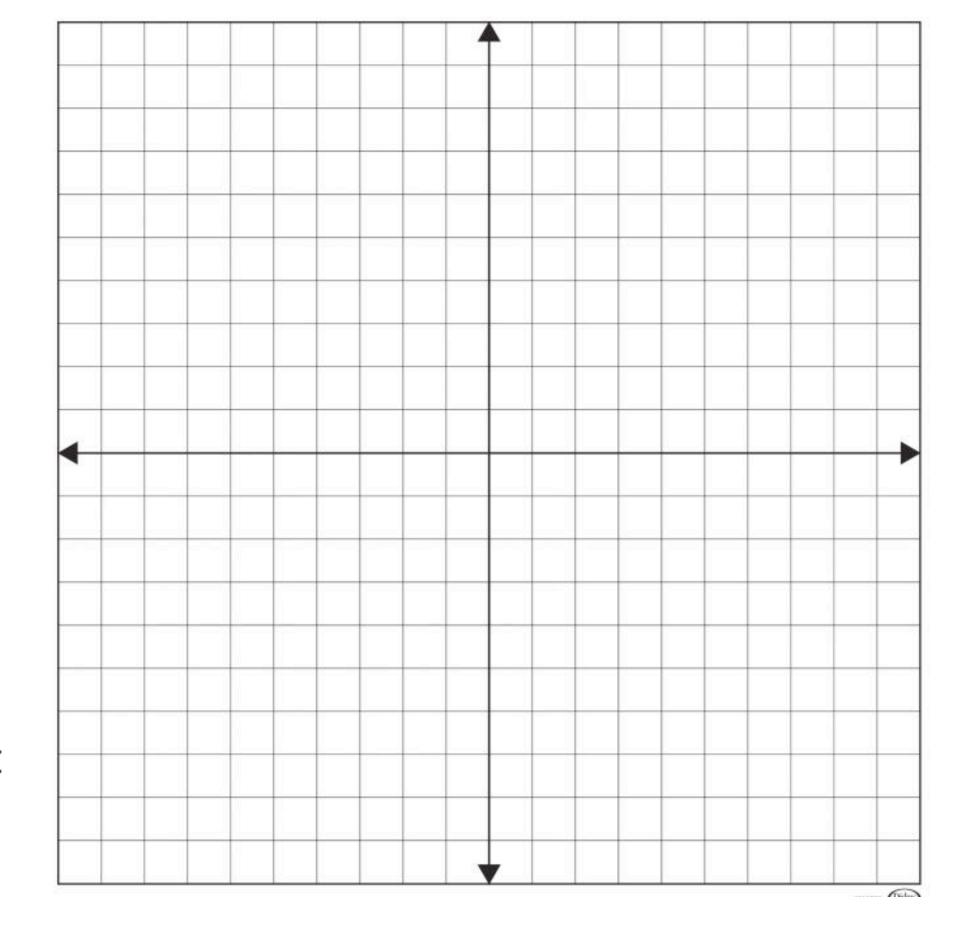
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis



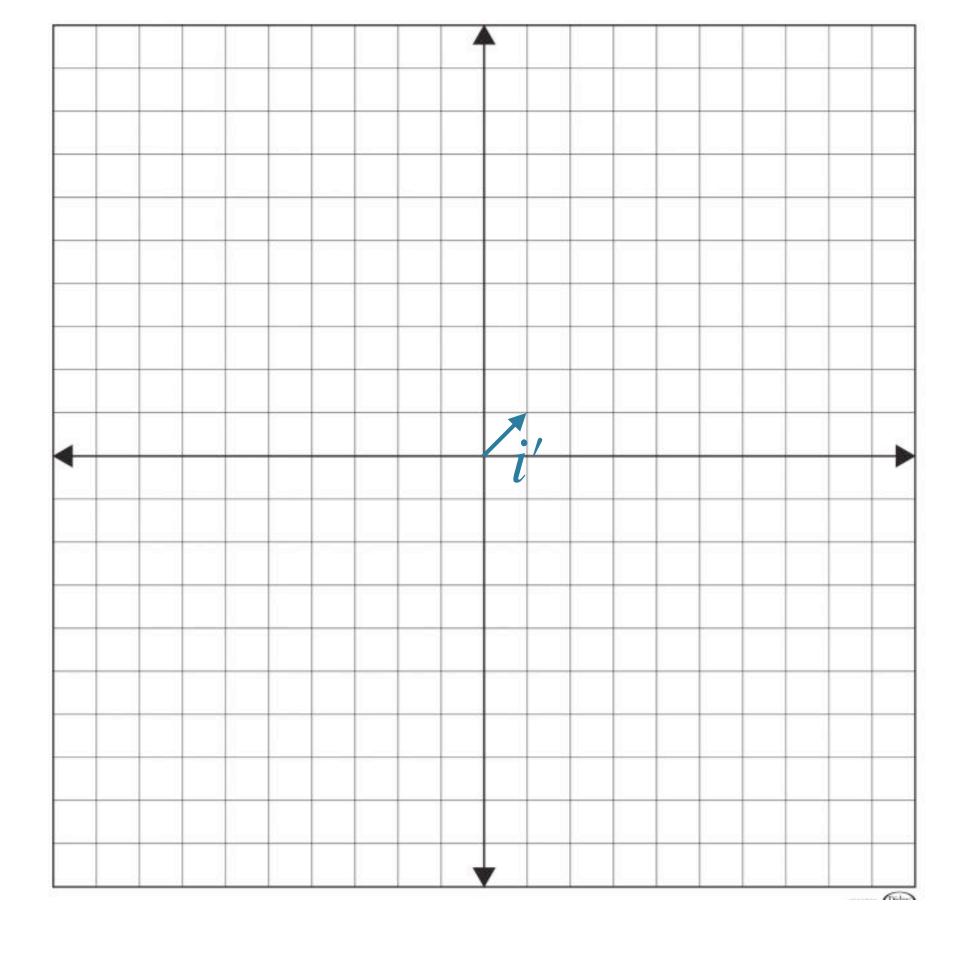
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



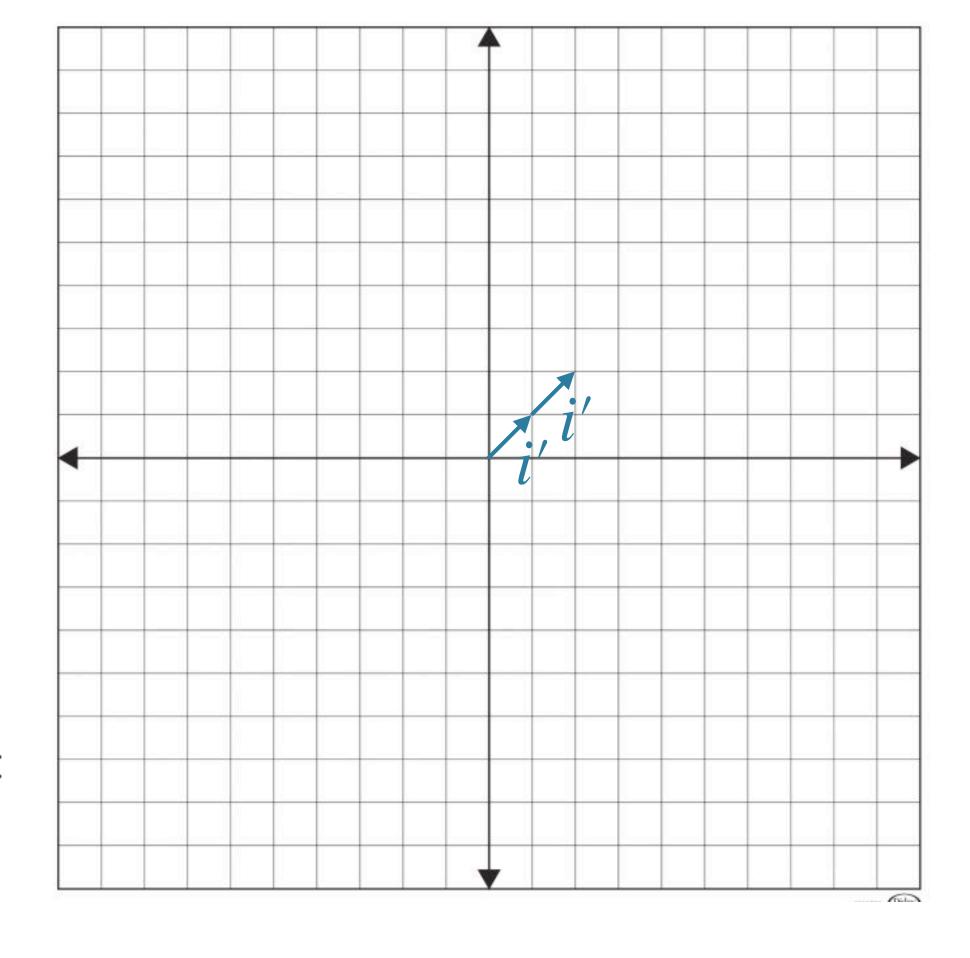
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



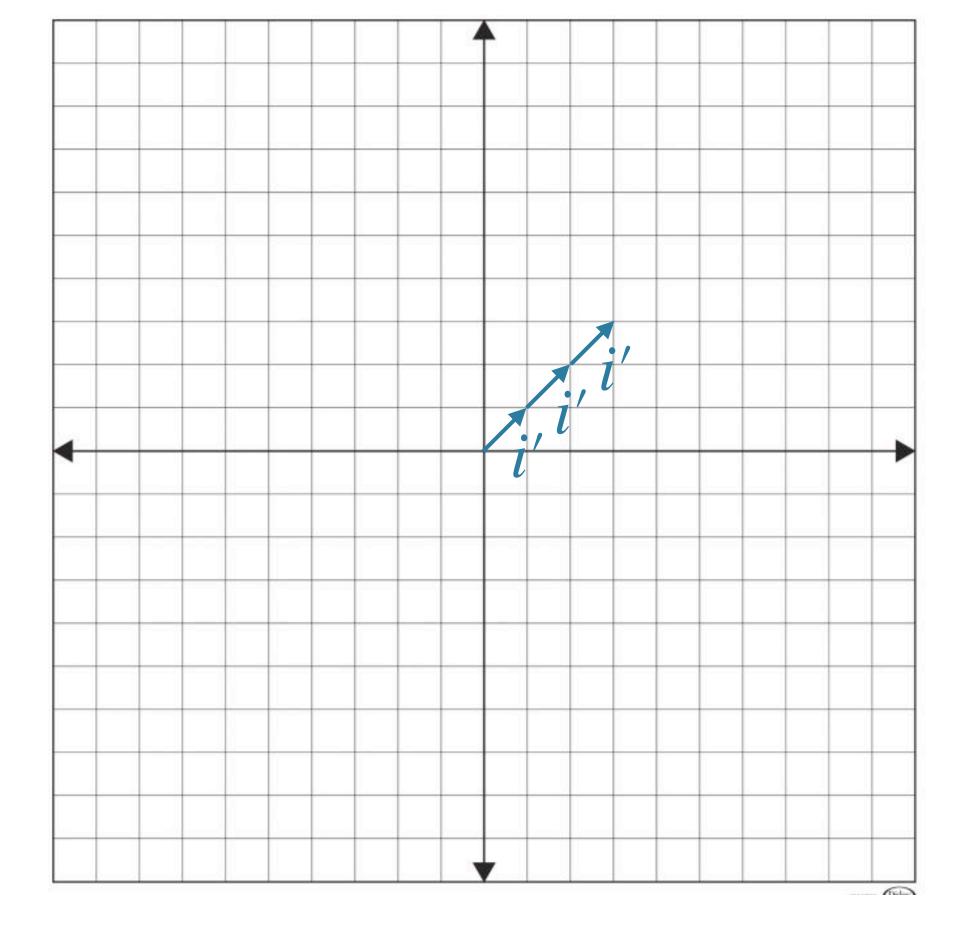
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



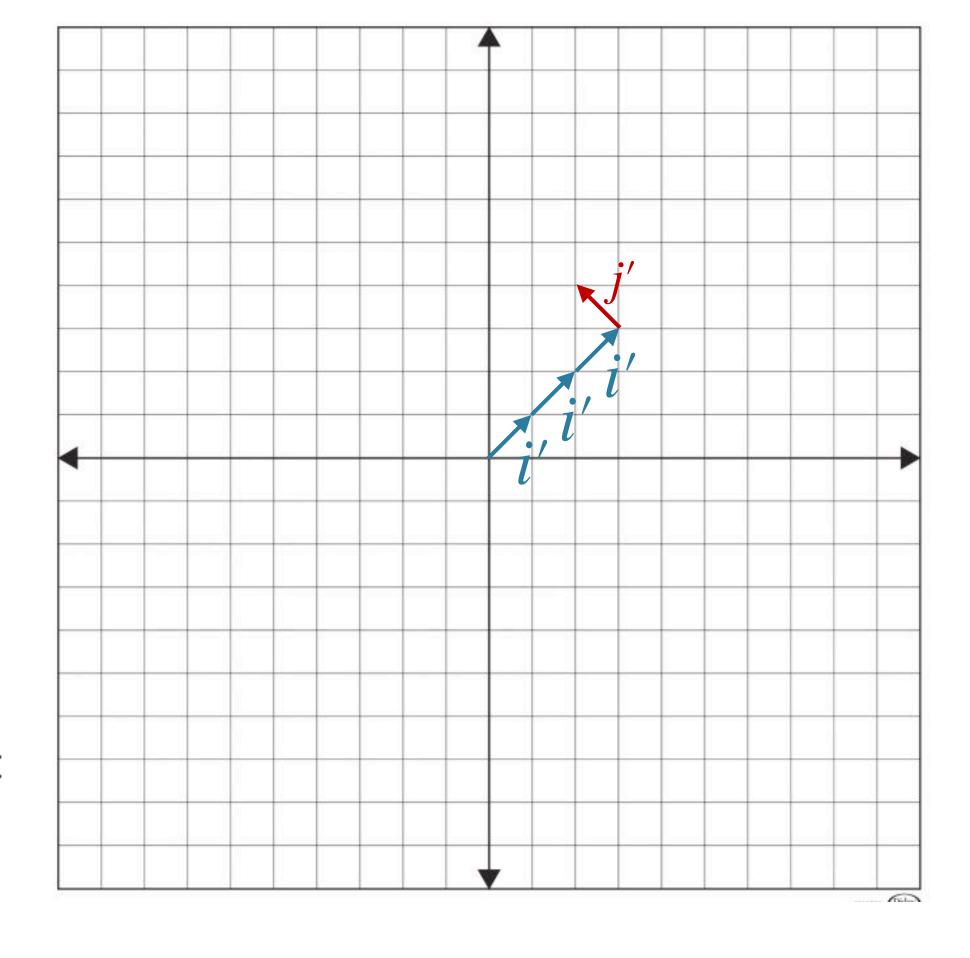
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



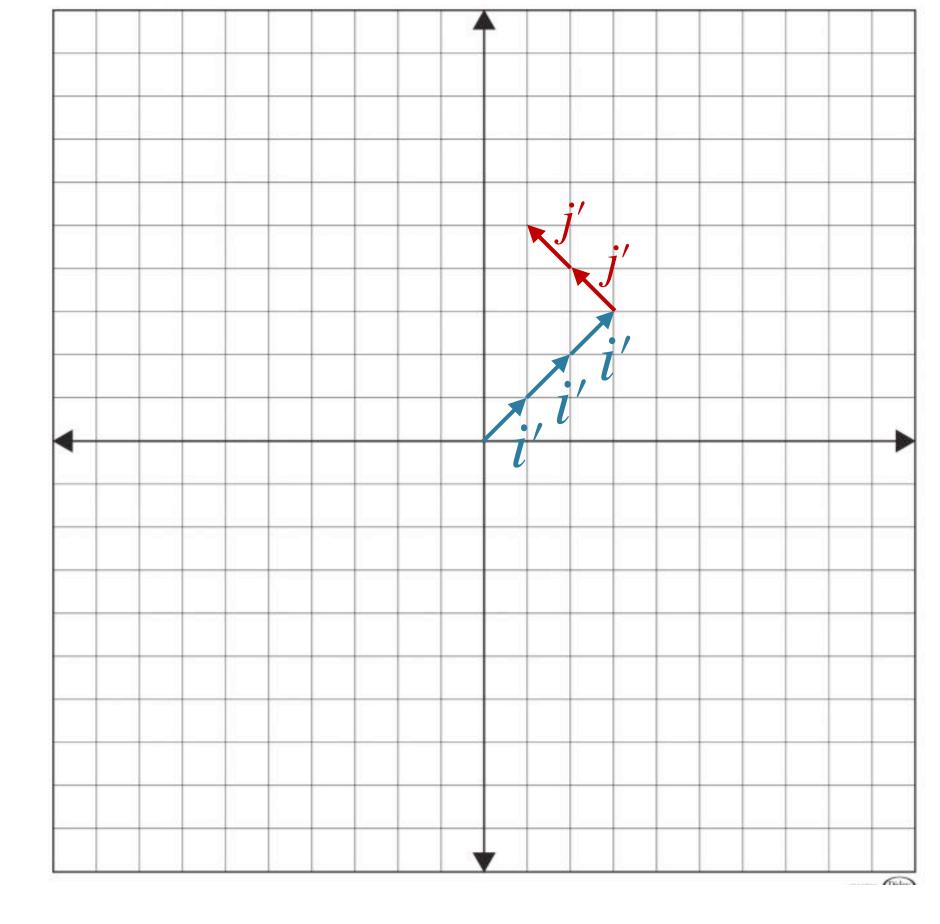
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis



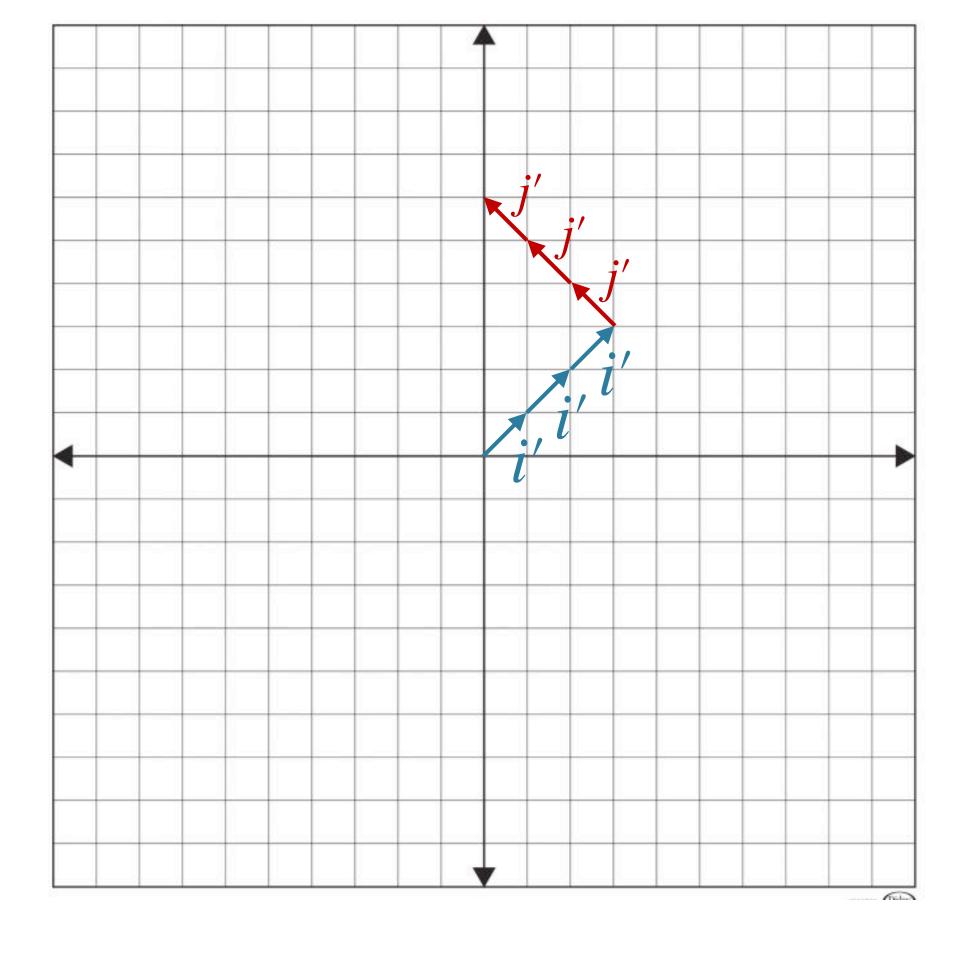
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



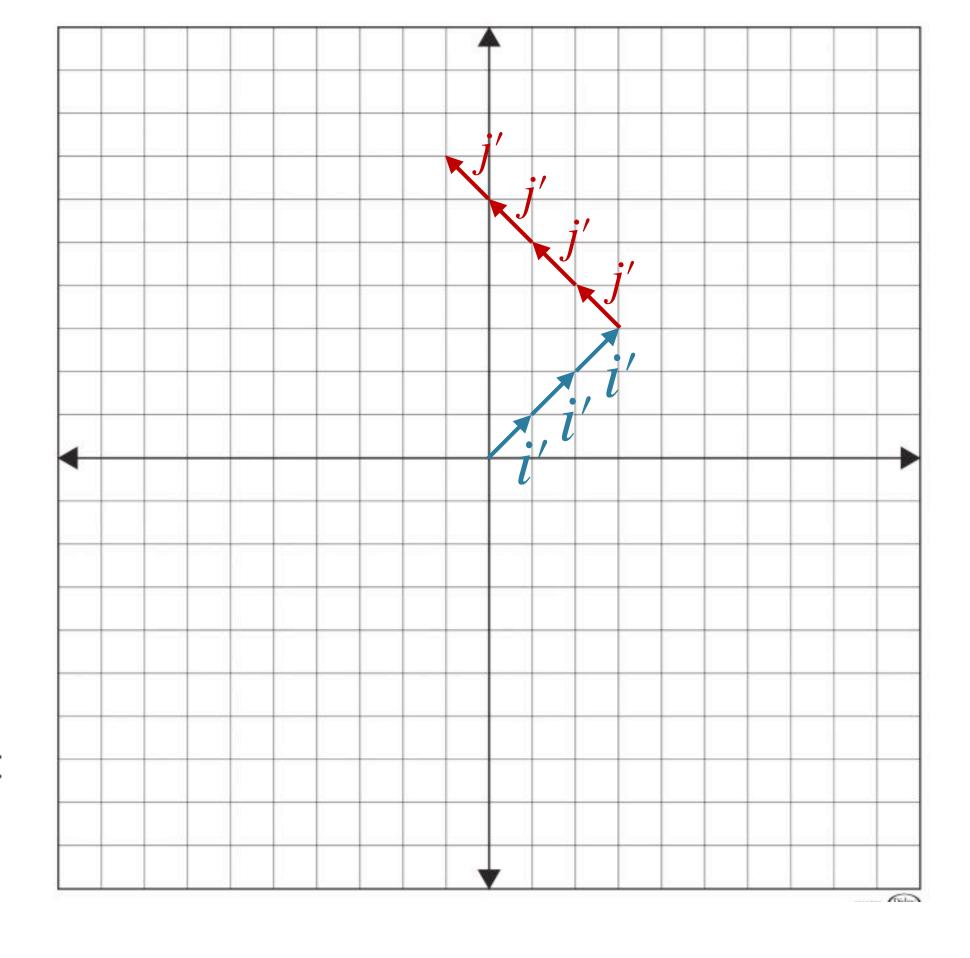
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



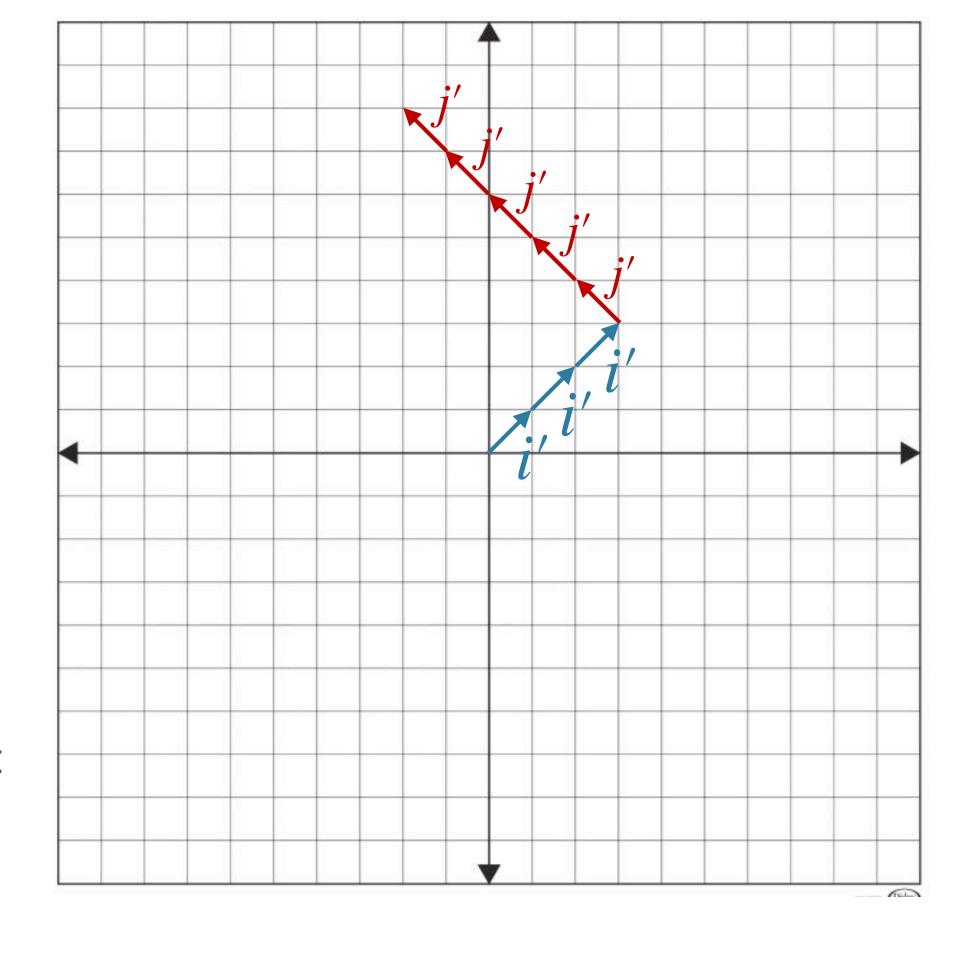
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



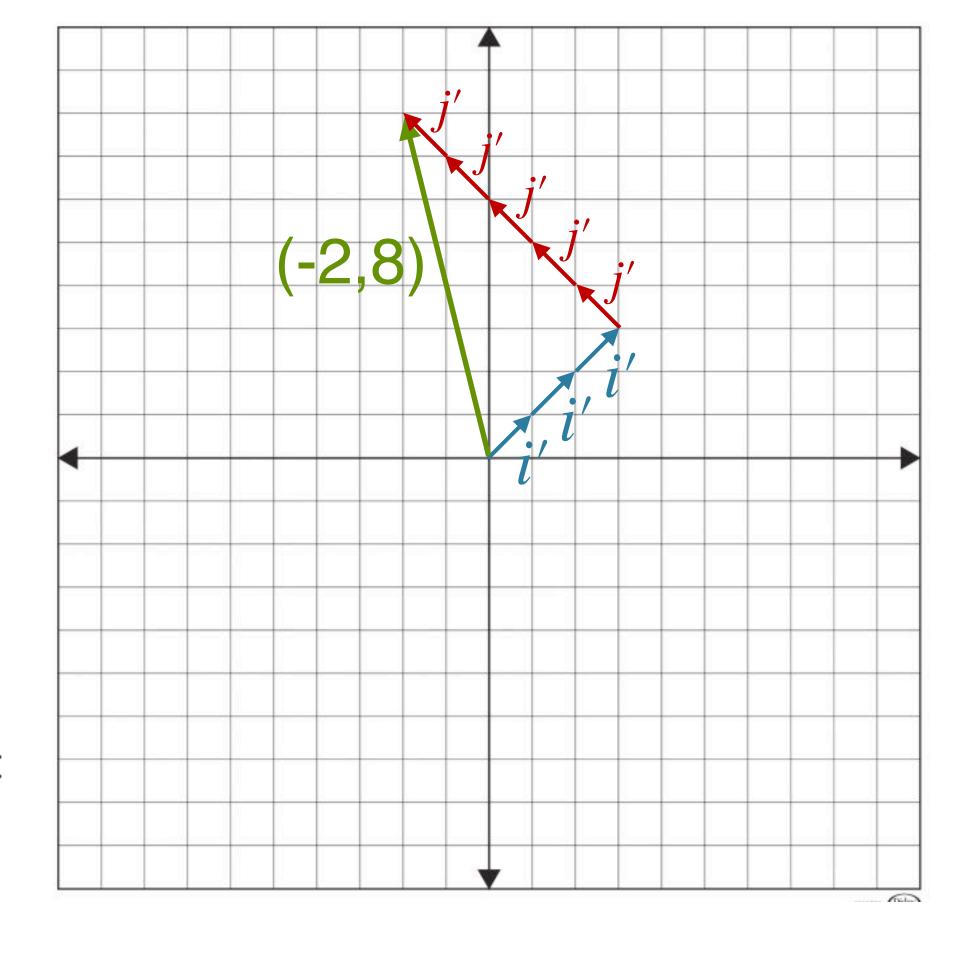
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis

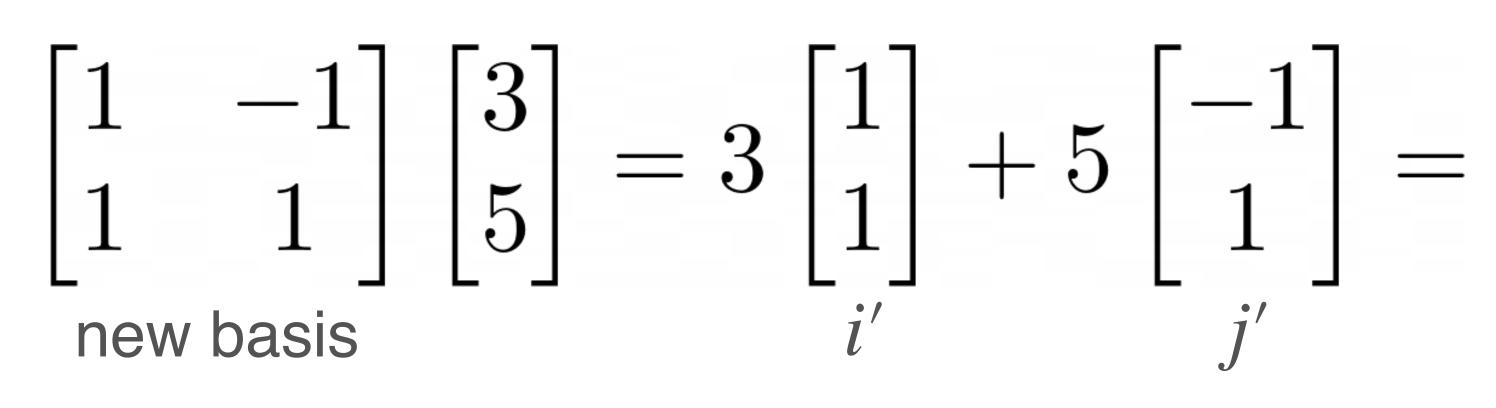


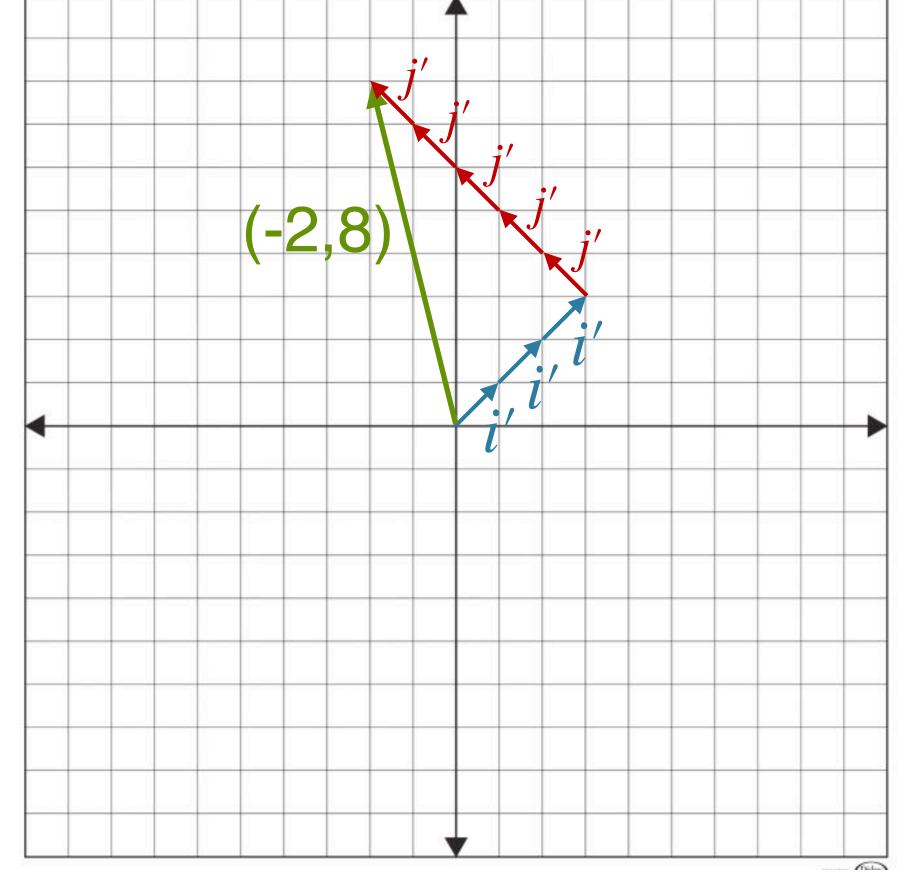
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



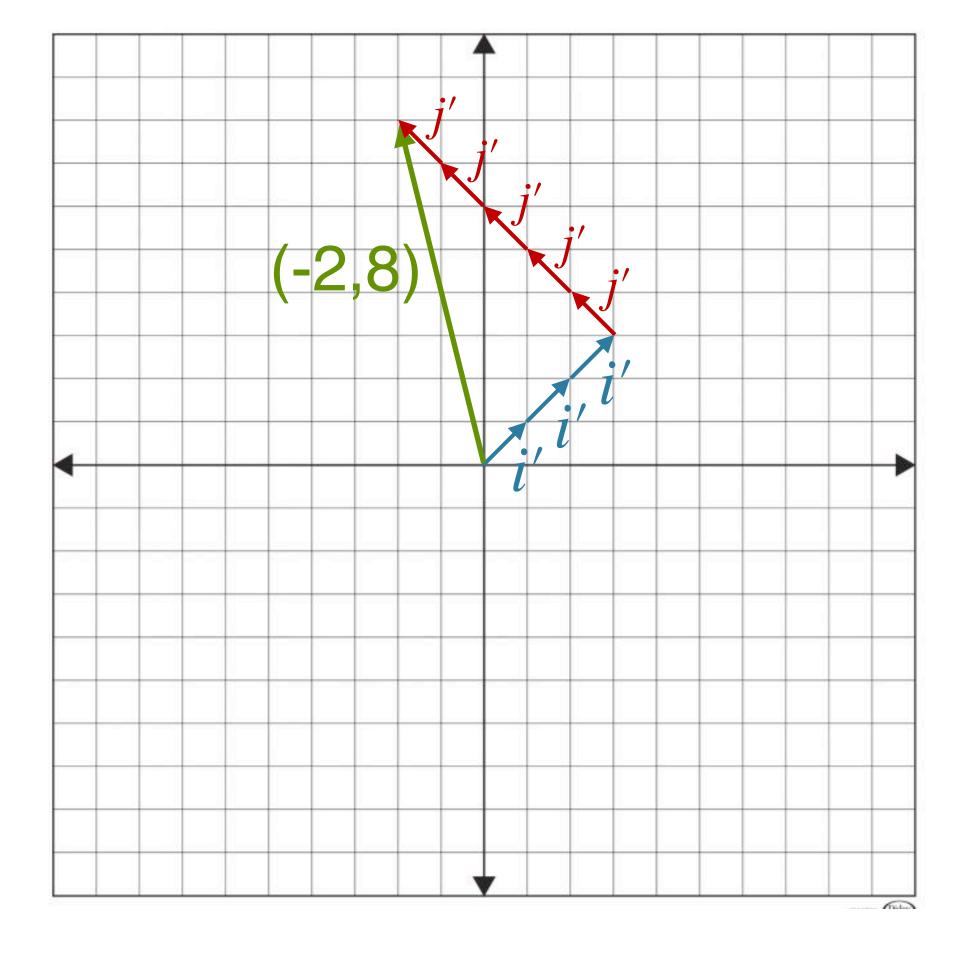
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns
 - This is called a linear transformation





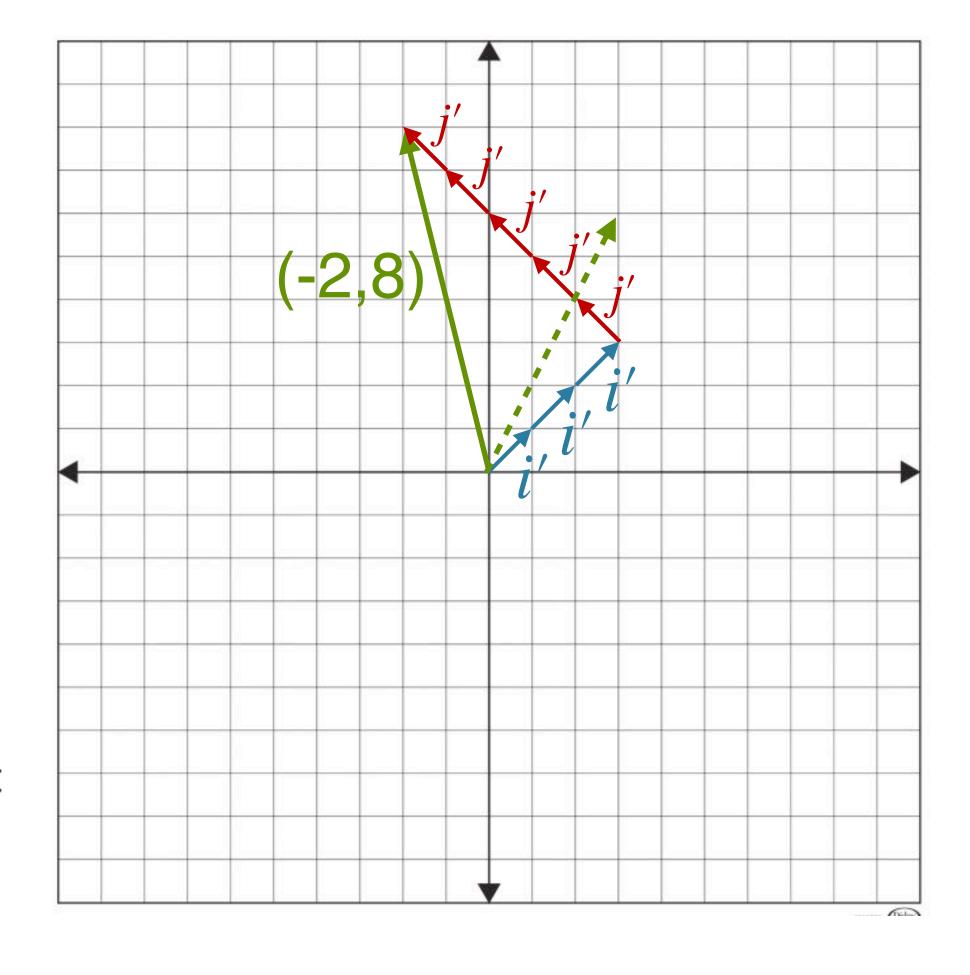
- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns
 - This is called a linear transformation
 - This matrix rotates the space by 45° and stretches it

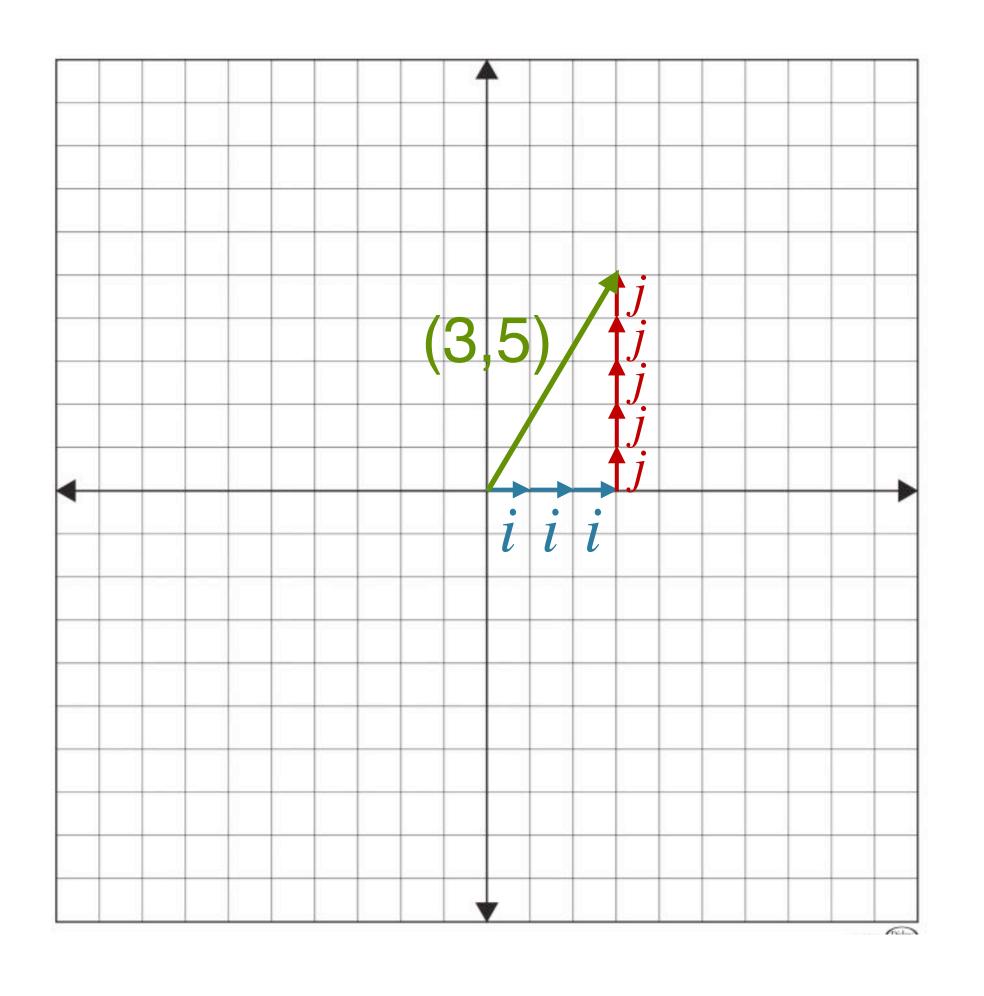
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$

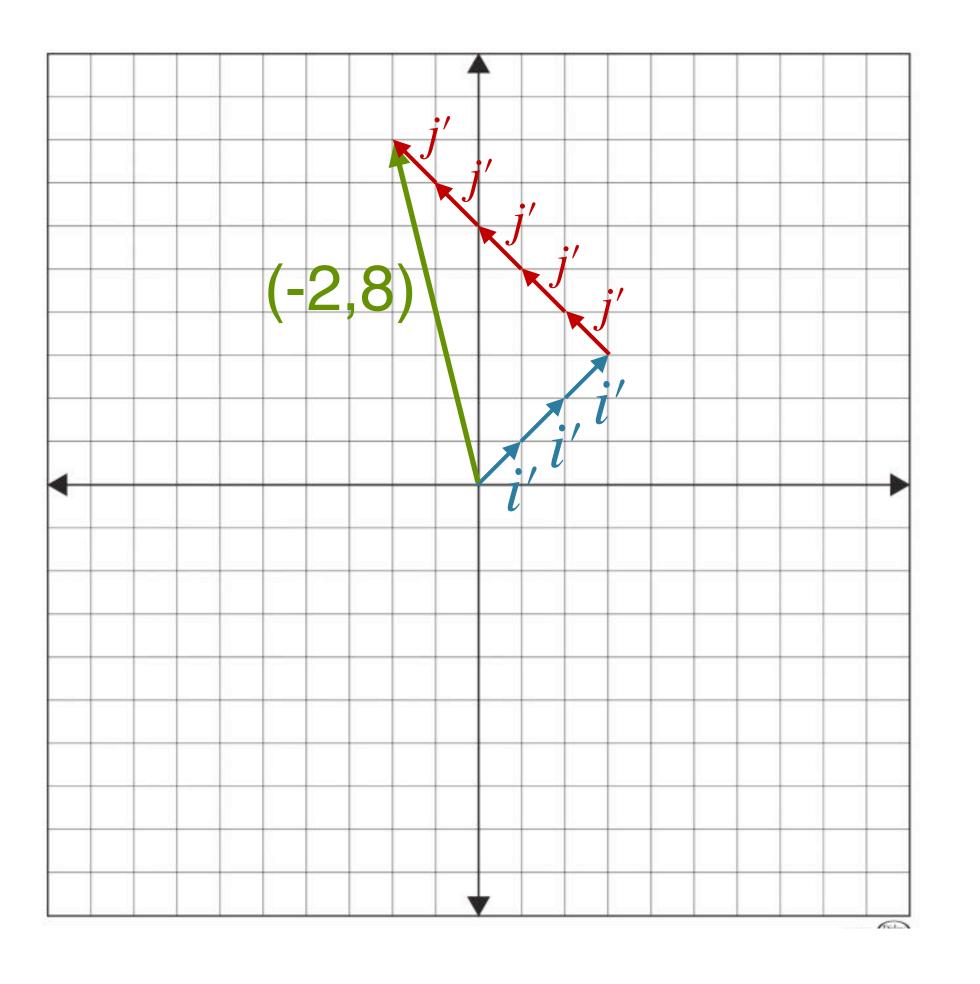


- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns
 - This is called a linear transformation
 - This matrix rotates the space by 45° and stretches it

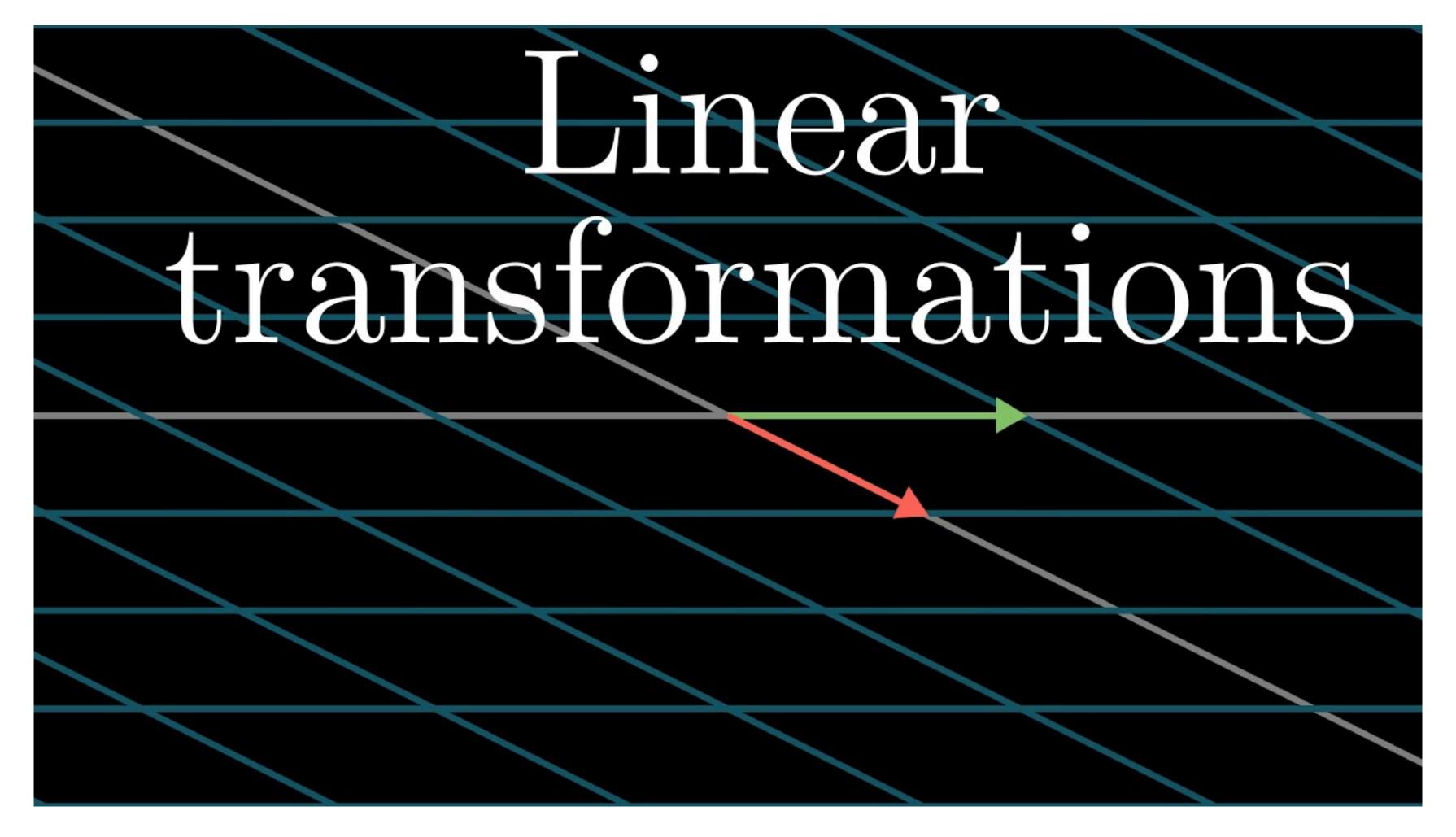
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$
 new basis
$$i' \qquad j'$$



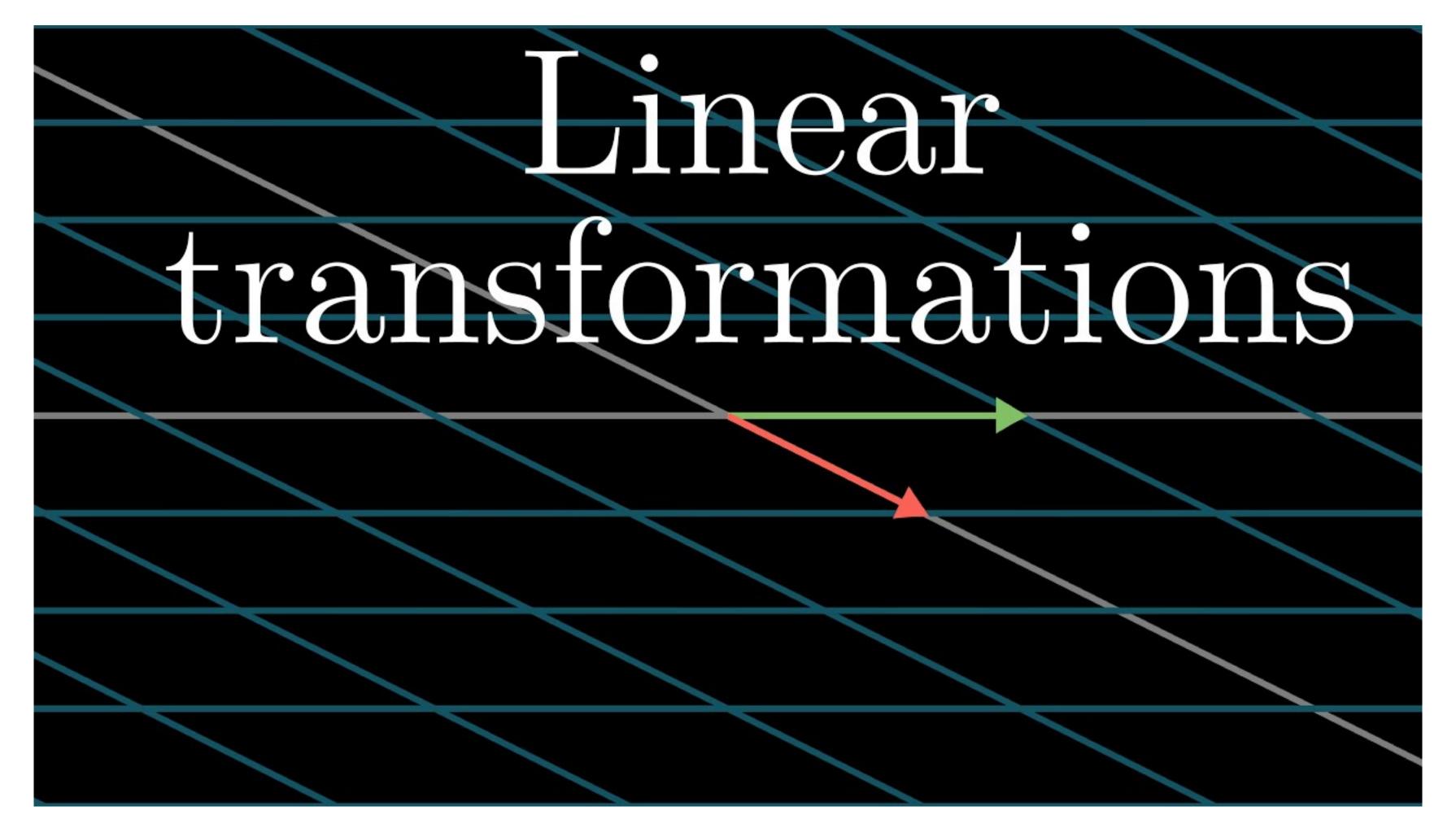




Visualizing Linear Transformations



Visualizing Linear Transformations



Linear transformations (aka matrix multiplications) are the basic operation
 of neural networks

- Linear transformations (aka matrix multiplications) are the basic operation
 of neural networks
- A feedforward NN layer:

- Linear transformations (aka matrix multiplications) are the basic operation
 of neural networks
- A feedforward NN layer:
 - Takes in an input vector

- Linear transformations (aka matrix multiplications) are the basic operation of neural networks
- A feedforward NN layer:
 - Takes in an input vector
 - Applies a linear transformation

- Linear transformations (aka matrix multiplications) are the basic operation
 of neural networks
- A feedforward NN layer:
 - Takes in an input vector
 - Applies a linear transformation
 - Adds a non-linear activation function (we'll cover this later)

- Linear transformations (aka matrix multiplications) are the basic operation
 of neural networks
- A feedforward NN layer:
 - Takes in an input vector
 - Applies a linear transformation
 - Adds a non-linear activation function (we'll cover this later)
- TLDR: Neural Nets transform vectors and vector spaces