Recurrent Neural Networks 1

Ling 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2024

Today's Plan

- Last time:
 - Feed-forward models for NLP tasks
 - Deep Averaging Network (DAN)
 - Neural Probabilistic Language Model
 - Additional Training Notes
 - Regularization
 - Early stopping
 - Hyper-parameter searching
- Today: intro to *Recurrent* Neural Networks

Announcements

- Implementing ops in edugrad:
 - You can use any numpy operations you want; goal is to understand forward/ backward API
 - https://github.com/shanest/edugrad
 - Log: base e, don't need to do special handling of bad input arguments (like 0)
- Edugrad is installed in the course conda environment, so be sure to activate it

Decorators

- @tensor_op in edugrad code: what is this??
 - This converts `Operation`s into methods on `Tensor`s
 - Handles dynamic graph construction, the 'ctx' magic, etc.
- Python decorator (similar to decorator design pattern)
 - Design pattern to extend an object with more functionality
 - Decorators wrap their arguments, add features
 - e.g. registering in a central DB
- In Python, syntactic sugar:
 - With more complicated use cases
- Canonical examples: @classmethod, @staticmethod

```
@my_decorator
def fn(...):

def fn(...):

fn = my_decorator(fn)
```

Decorator Demo

```
def printer(method, *args):
    def fn(*args):
        output = method(*args)
        print(f"Output: {output}")
    return fn
@printer
def add(a, b):
    return a + b
add(1, 2) # prints "Output: 3"
```

Recurrent Neural Networks

- Feed-forward networks: fixed-size input, fixed-size output
 - DAN classifier: average embeddings of words
 - Feedforward LM: n-gram assumption (i.e. fixed-size context of word embeddings)

- Feed-forward networks: fixed-size input, fixed-size output
 - DAN classifier: average embeddings of words
 - Feedforward LM: n-gram assumption (i.e. fixed-size context of word embeddings)
- RNNs process sequences of vectors
 - Maintaining "hidden" state
 - Applying the same operation at each step

- Feed-forward networks: fixed-size input, fixed-size output
 - DAN classifier: average embeddings of words
 - Feedforward LM: n-gram assumption (i.e. fixed-size context of word embeddings)
- RNNs process sequences of vectors
 - Maintaining "hidden" state
 - Applying the same operation at each step
- Different RNNs
 - Different operations at each step
 - Operation also called "recurrent cell"
 - Other architectural considerations (e.g. depth, bidirectionally)

Long-distance dependencies: agreement

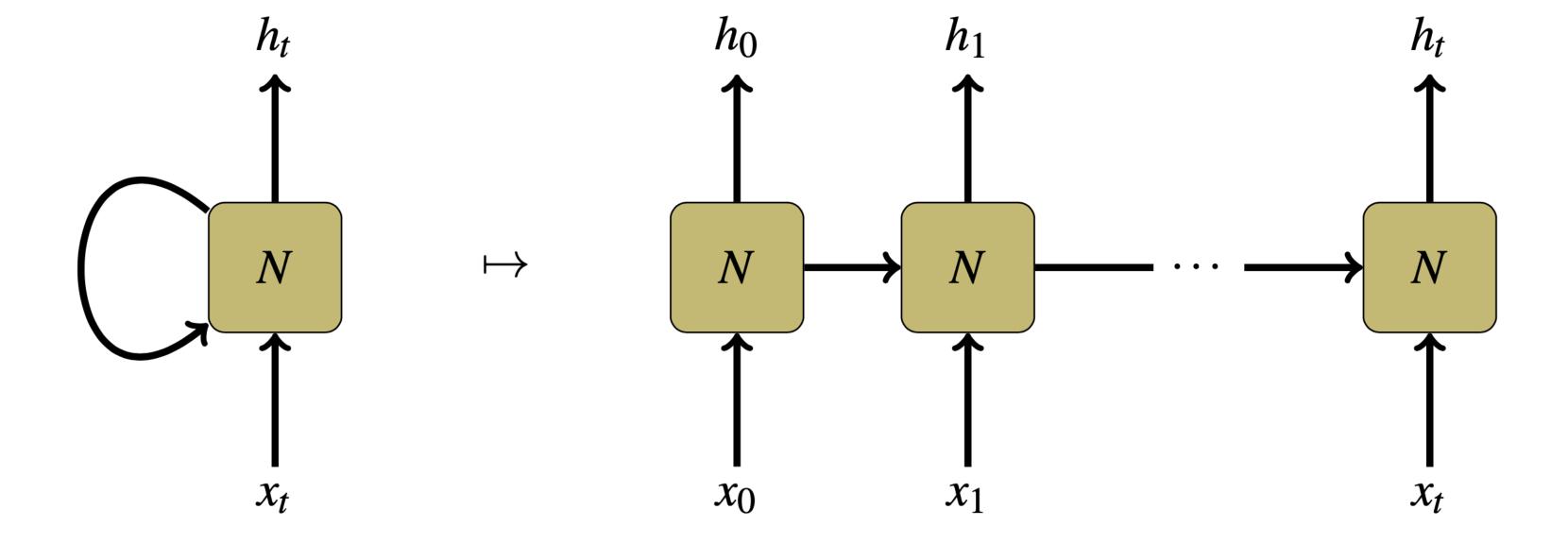
- Language modeling (fill-in-the-blank)
 - The keys _____
 - The keys on the table _____
 - The keys next to the book on top of the table _____
- To get the number on the verb, need to look at the subject, which can be very far away
 - And number can disagree with linearly-close nouns

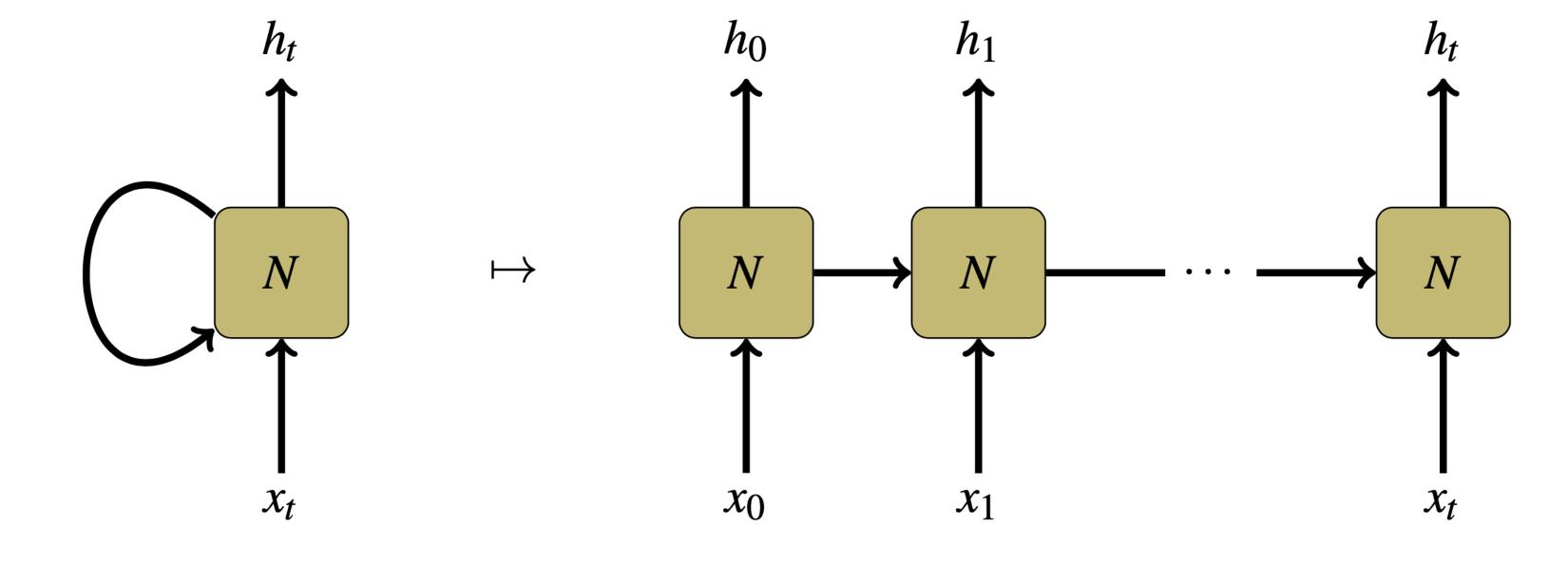
Selectional Restrictions

- The family moved from the city because they wanted a larger _____.
- The team moved from the city because they wanted a larger _____.

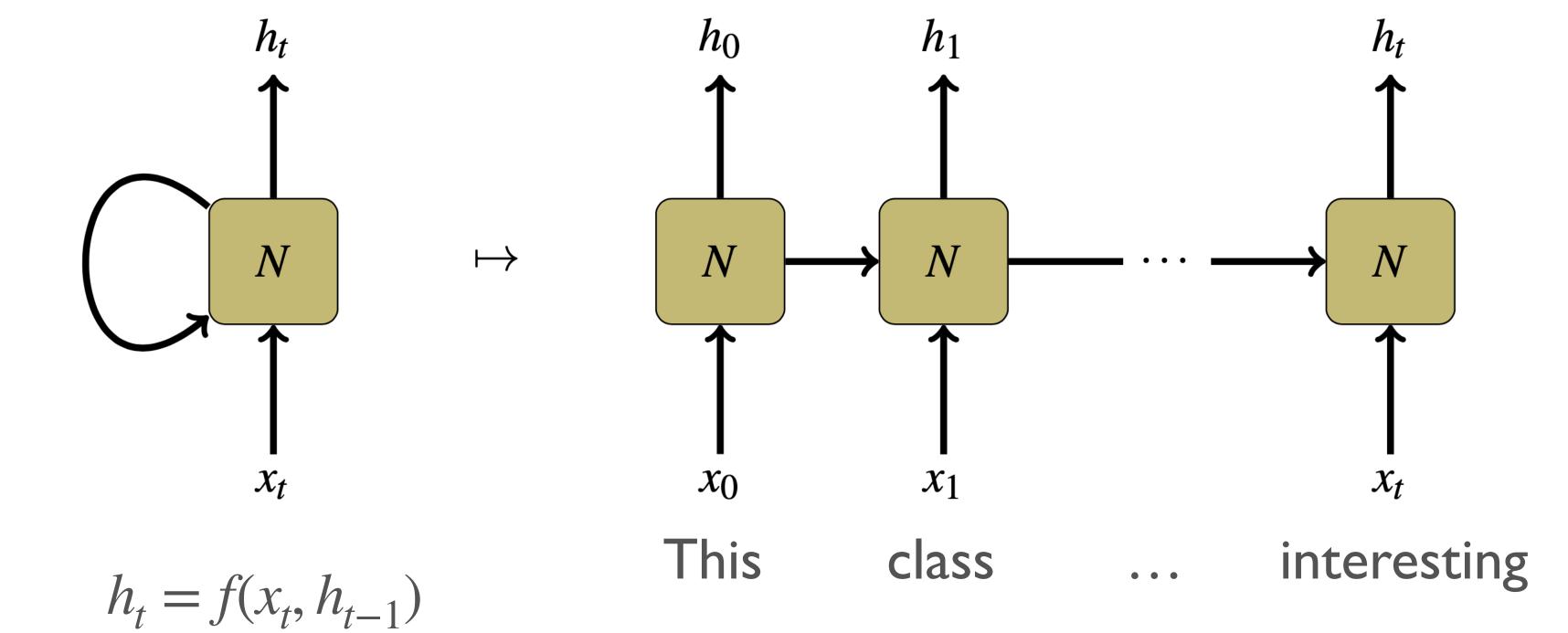
Selectional Restrictions

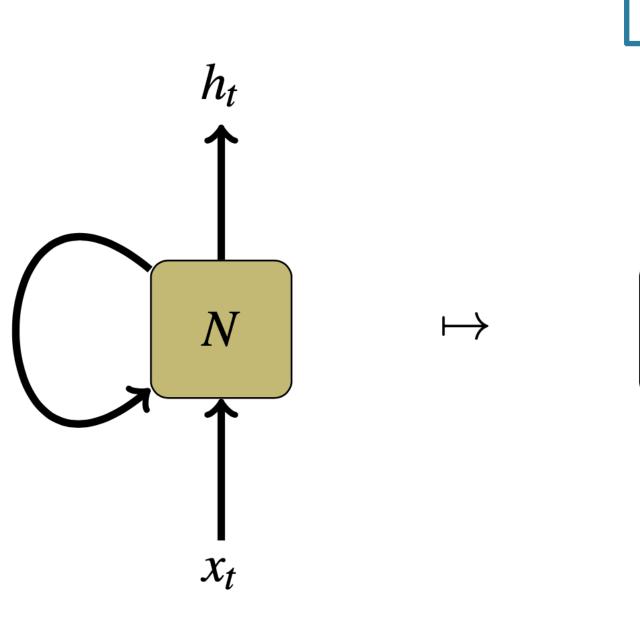
- The family moved from the city because they wanted a larger house.
- The team moved from the city because they wanted a larger market.
- Need models that can capture long-range dependencies like this.
- N-gram (whether count-based or neural) cannot (e.g. with n=4)
 - P(word I "they wanted a larger")



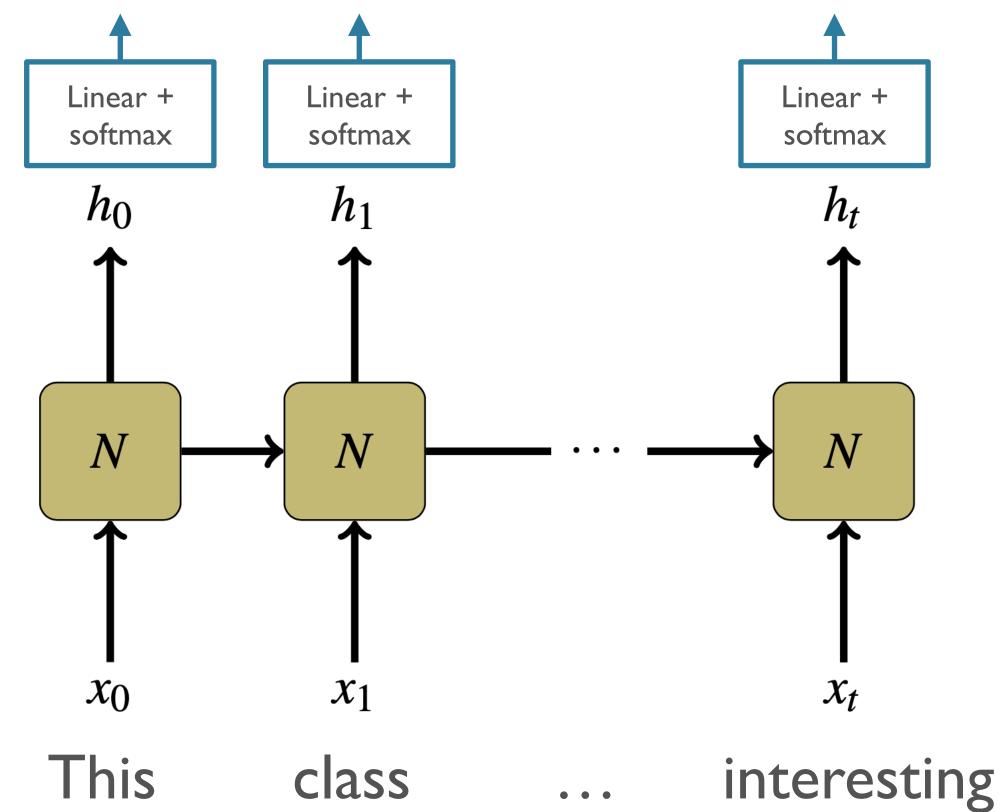


 $h_t = f(x_t, h_{t-1})$





 $h_t = f(x_t, h_{t-1})$



Simple / Vanilla / Elman RNNs

- Same kind of feed-forward computation we've been studying, but:
 - x_t : sequence element at time t
 - h_{t-1} : hidden state of the model at previous time t-1

Simple / Vanilla / Elman RNNs

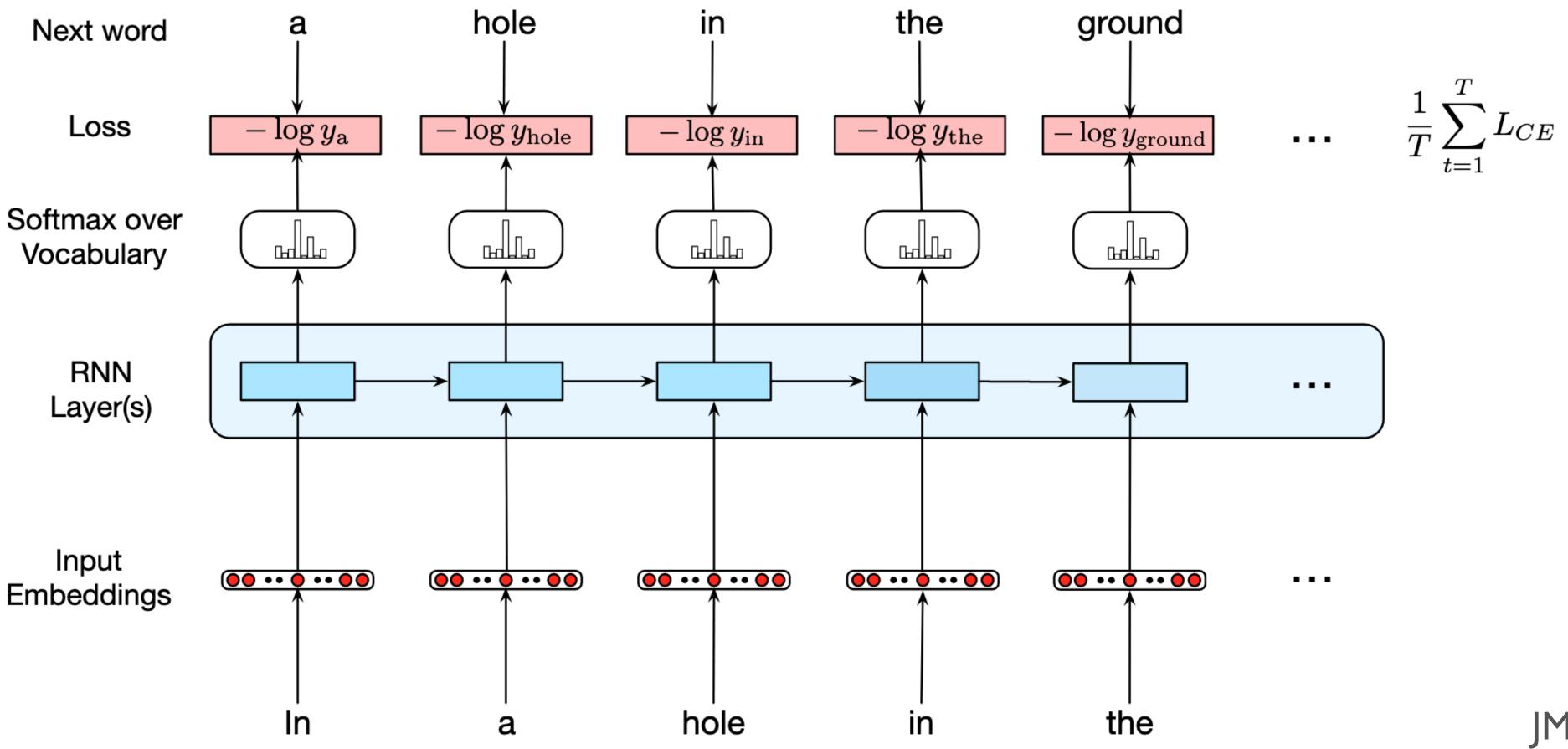
- Same kind of feed-forward computation we've been studying, but:
 - x_t : sequence element at time t
 - h_{t-1} : hidden state of the model at previous time t-1

Simple/"Vanilla" RNN:
$$h_t = \tanh(W_x x_t + W_h h_{t-1} + b)$$

Training: BPTT

- Backpropagation Through Time
- "Unroll" the network across time-steps
- Apply backprop to the "wide" network
 - Each cell has the same parameters
 - Gradients sum across time-steps
 - Multi-variable chain rule

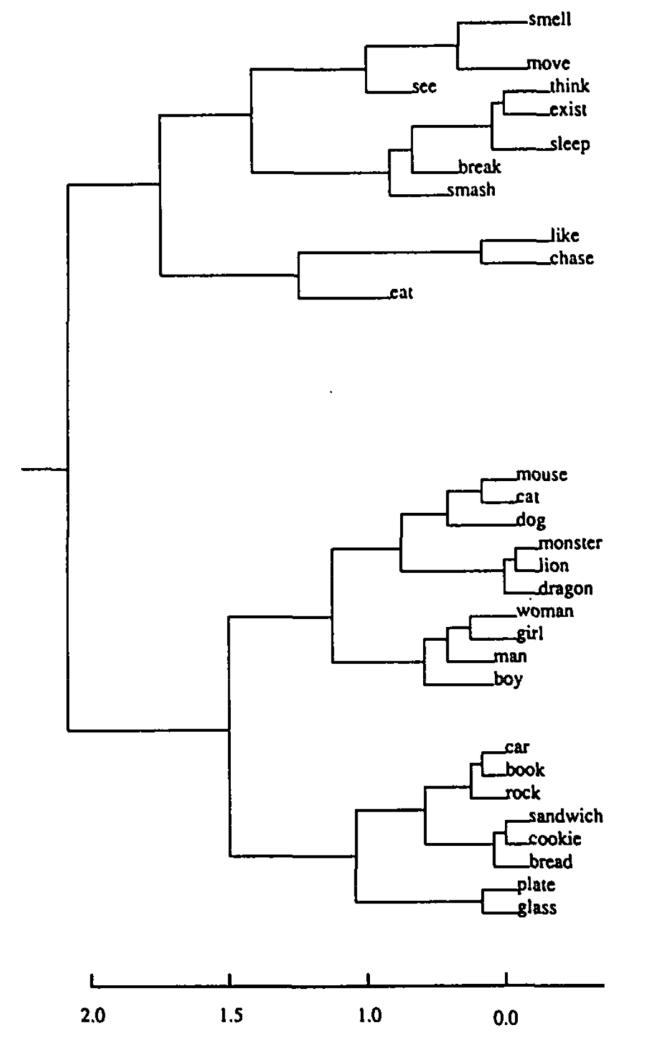
"Unrolled" RNN



JM sec 9.2.3

Power of RNNs

Hierarchical clustering of Vanilla RNN hidden states trained as LM on synthetic data:

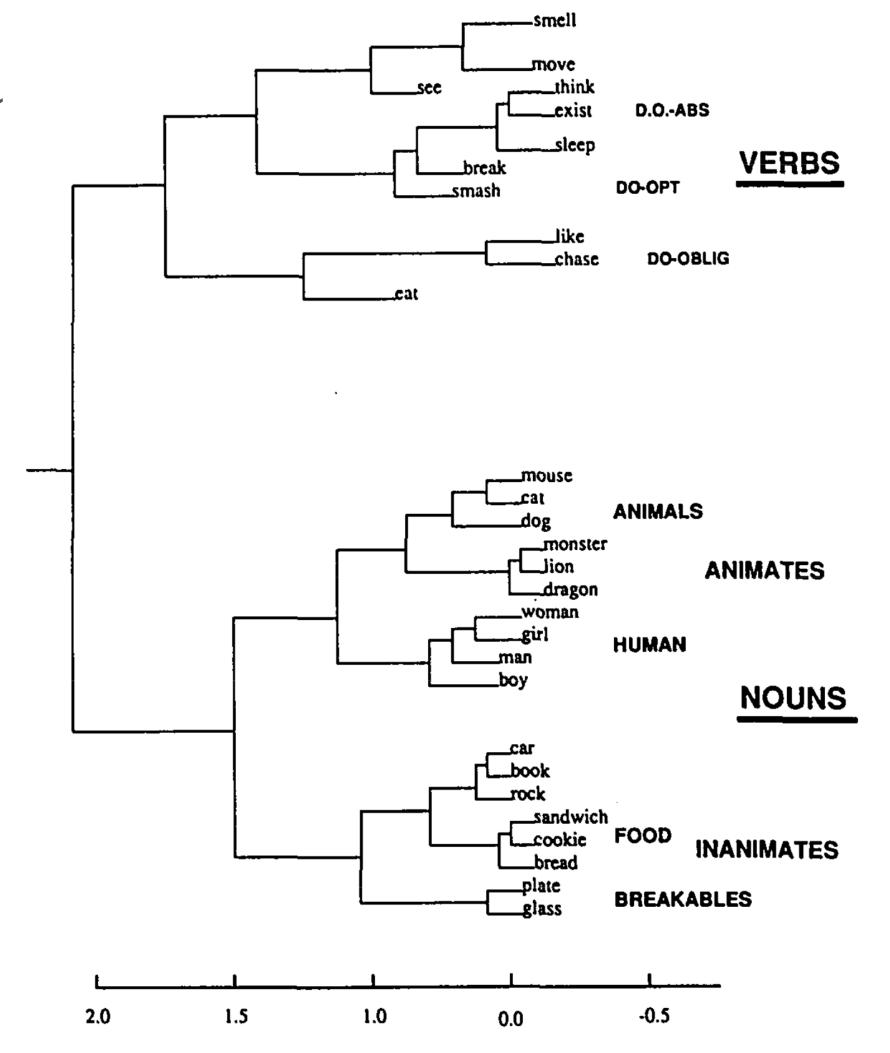


What trends do you notice?

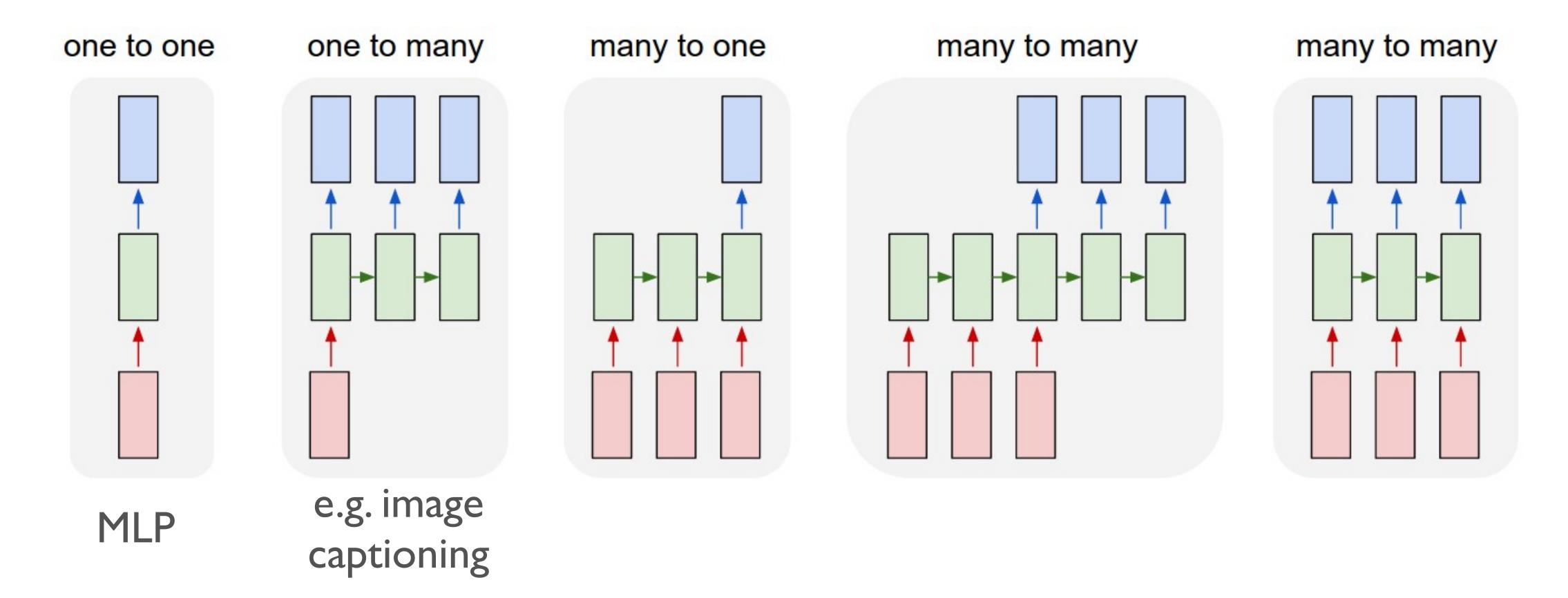
Elman 1990

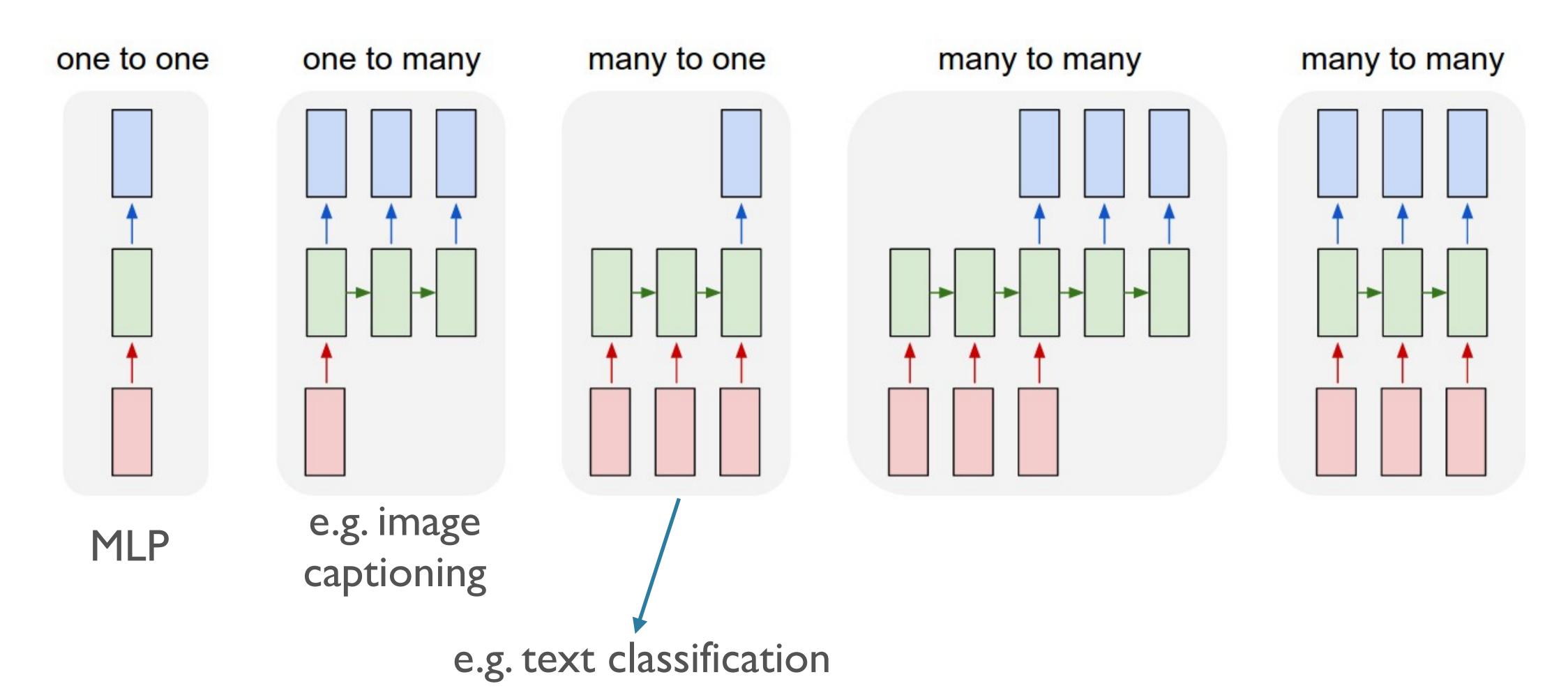
Power of RNNs

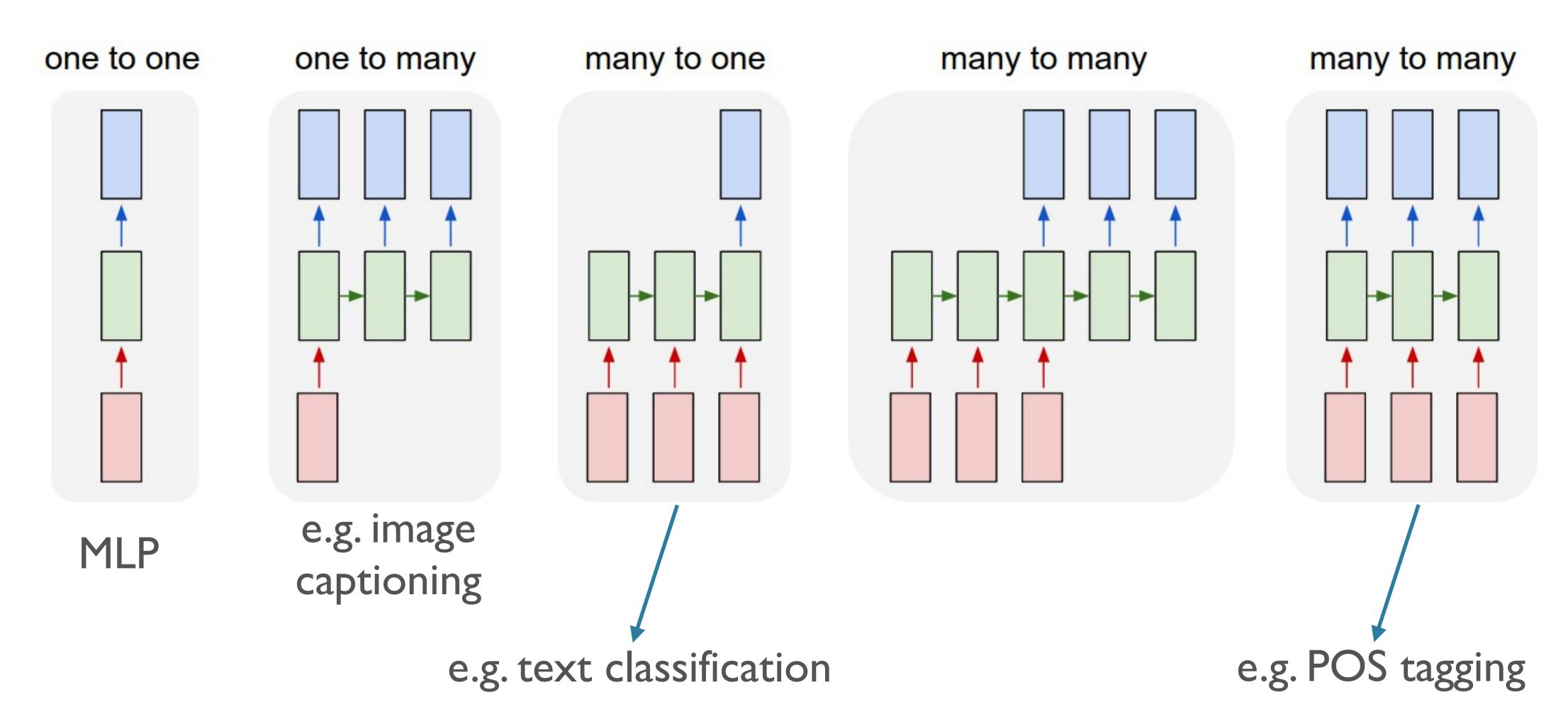
Hierarchical clustering of Vanilla RNN hidden states trained as LM on synthetic data:

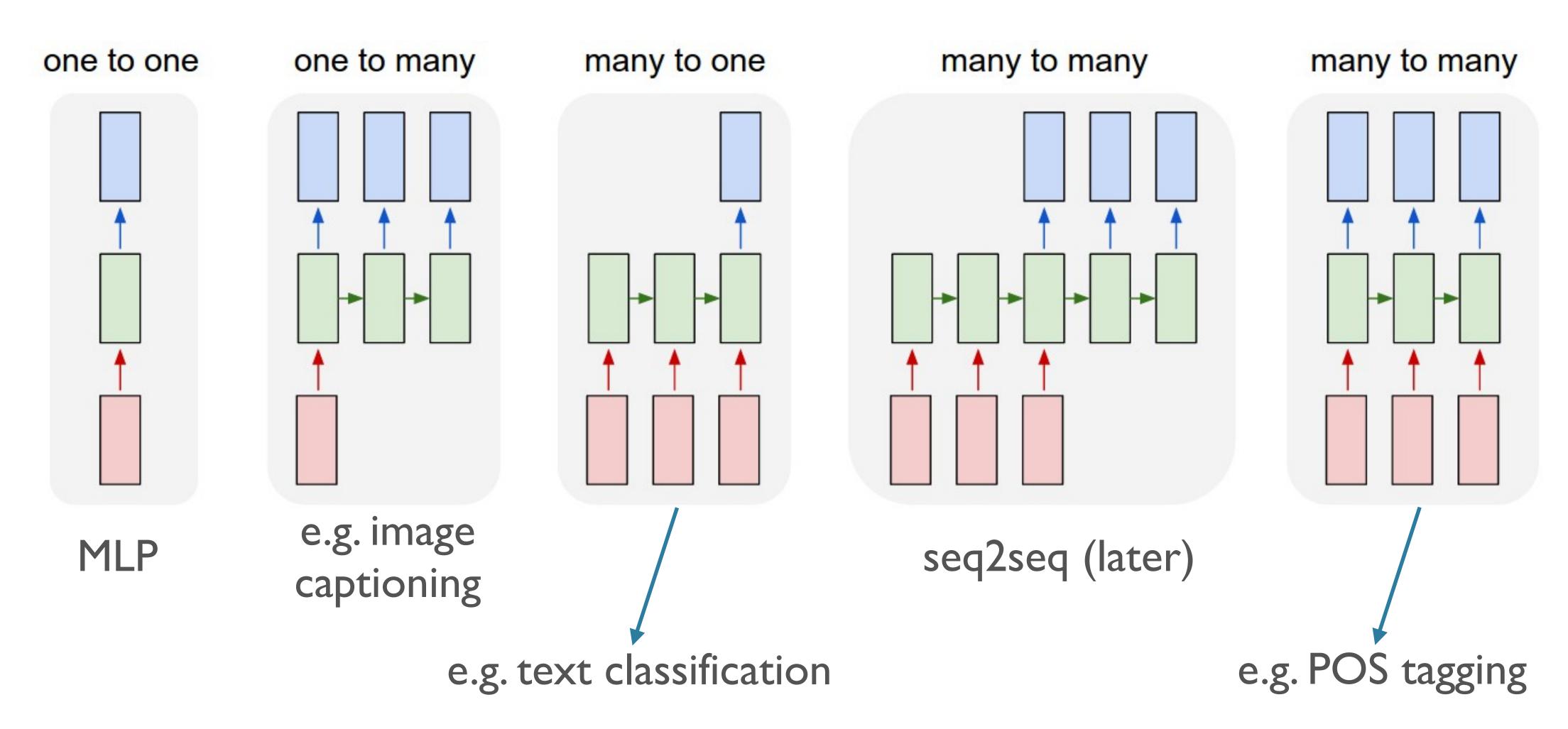


Elman 1990

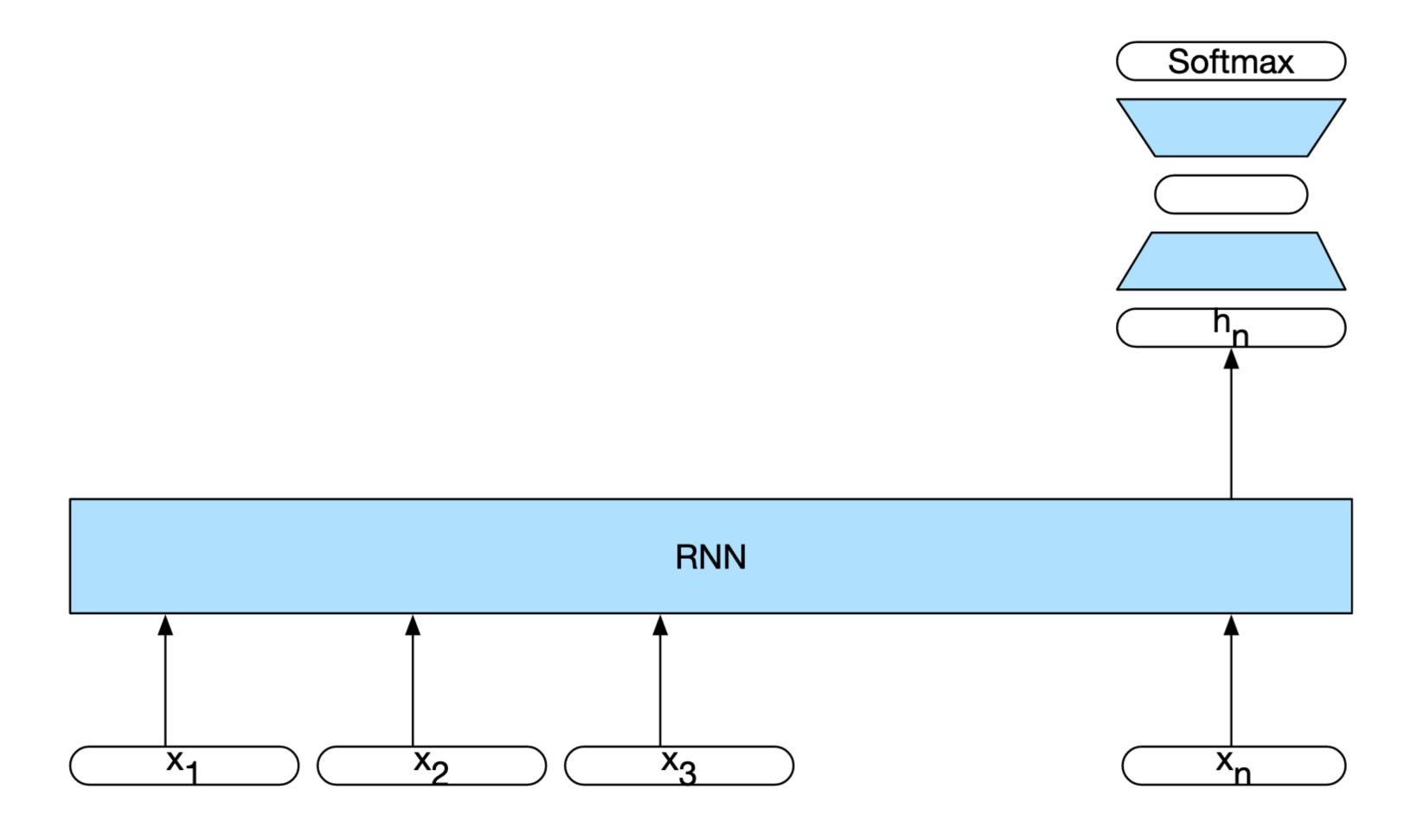






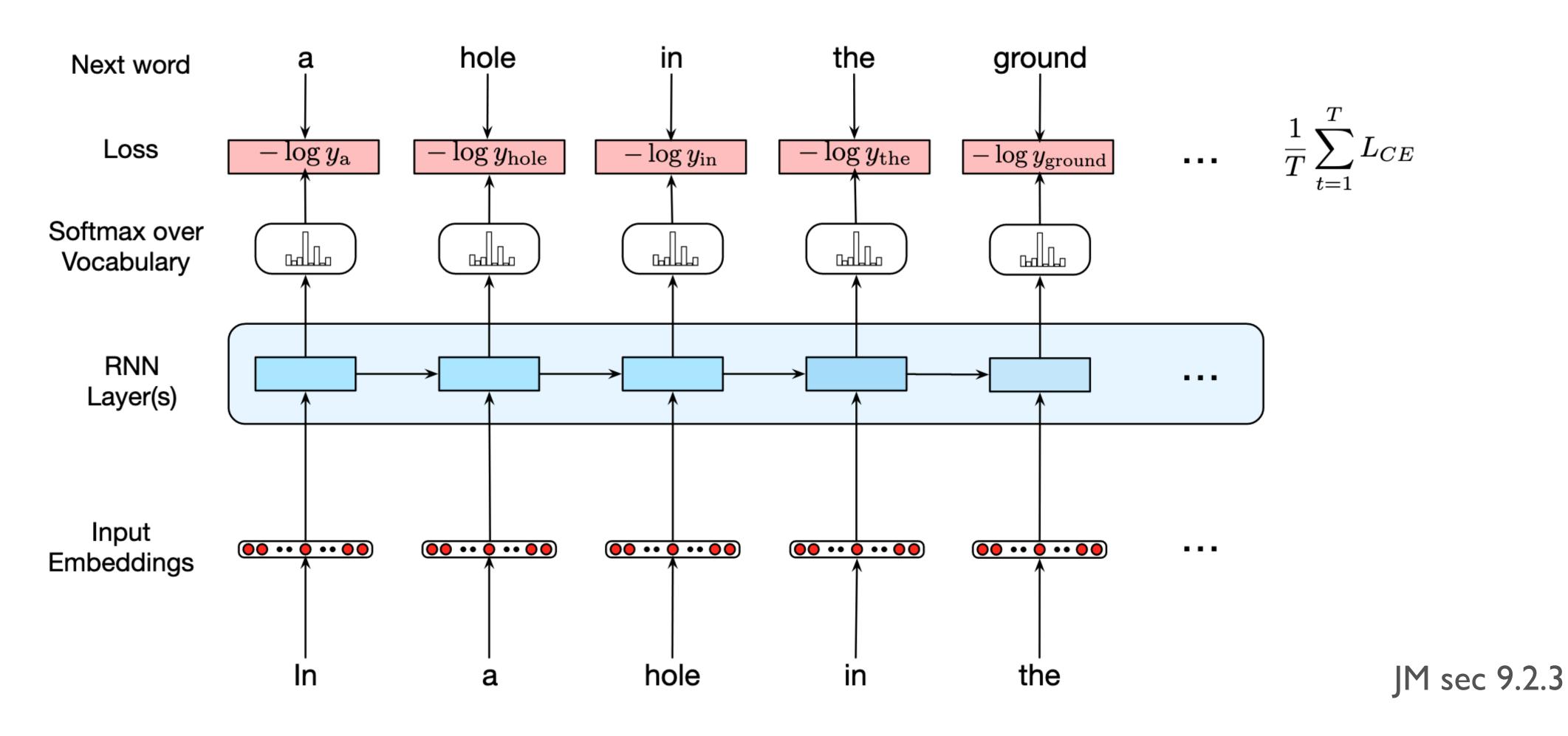


RNN for Text Classification

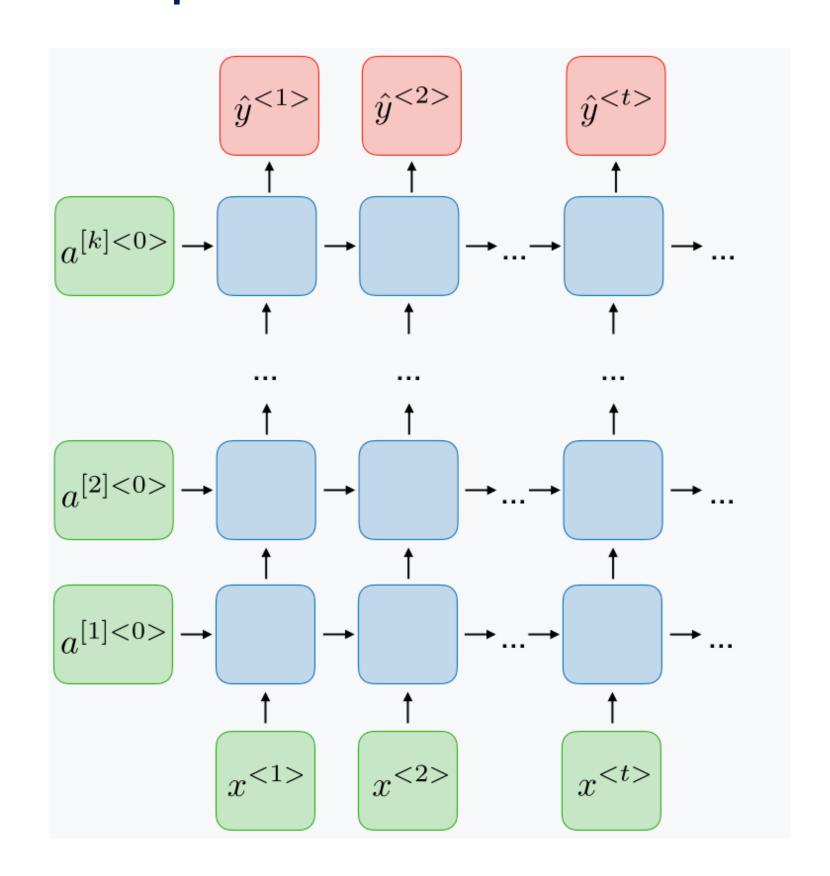


JM sec 9.2.5

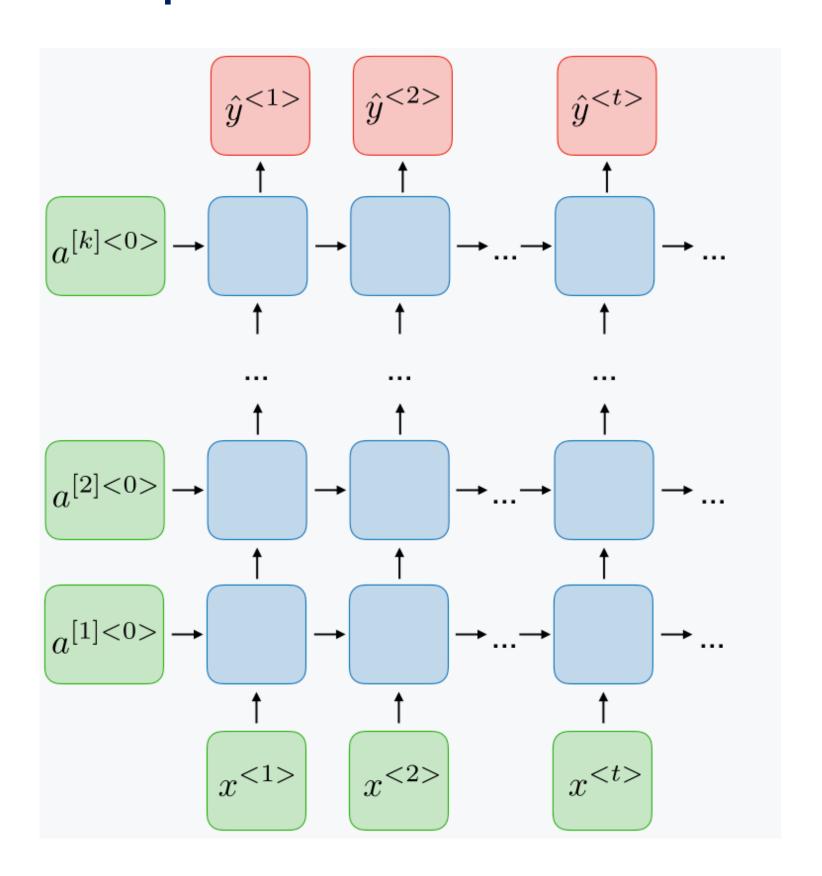
RNNs for Language Modeling

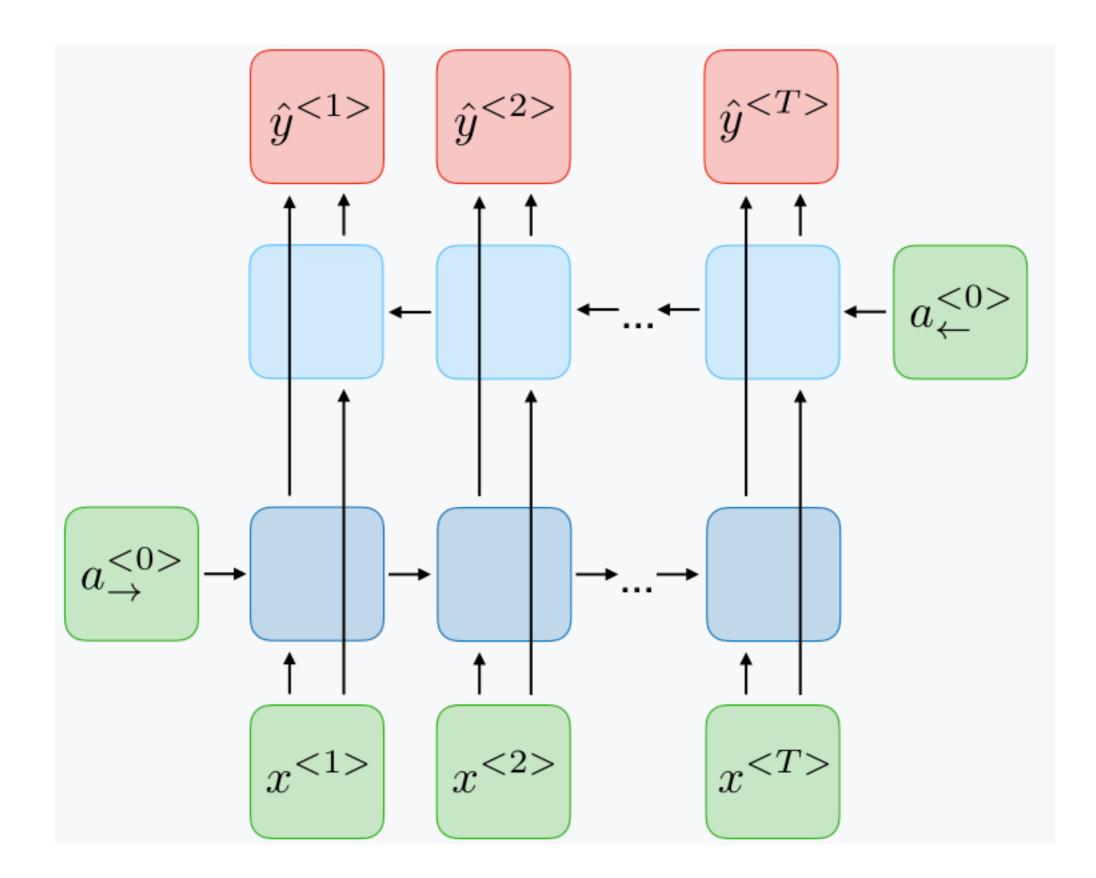


Deep RNNs:

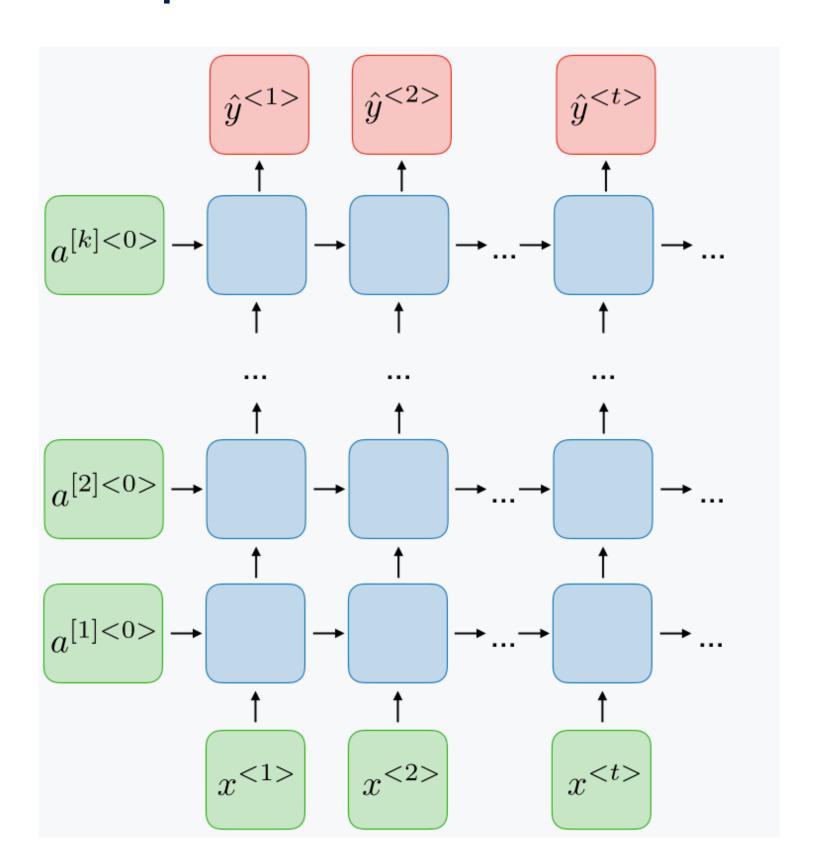


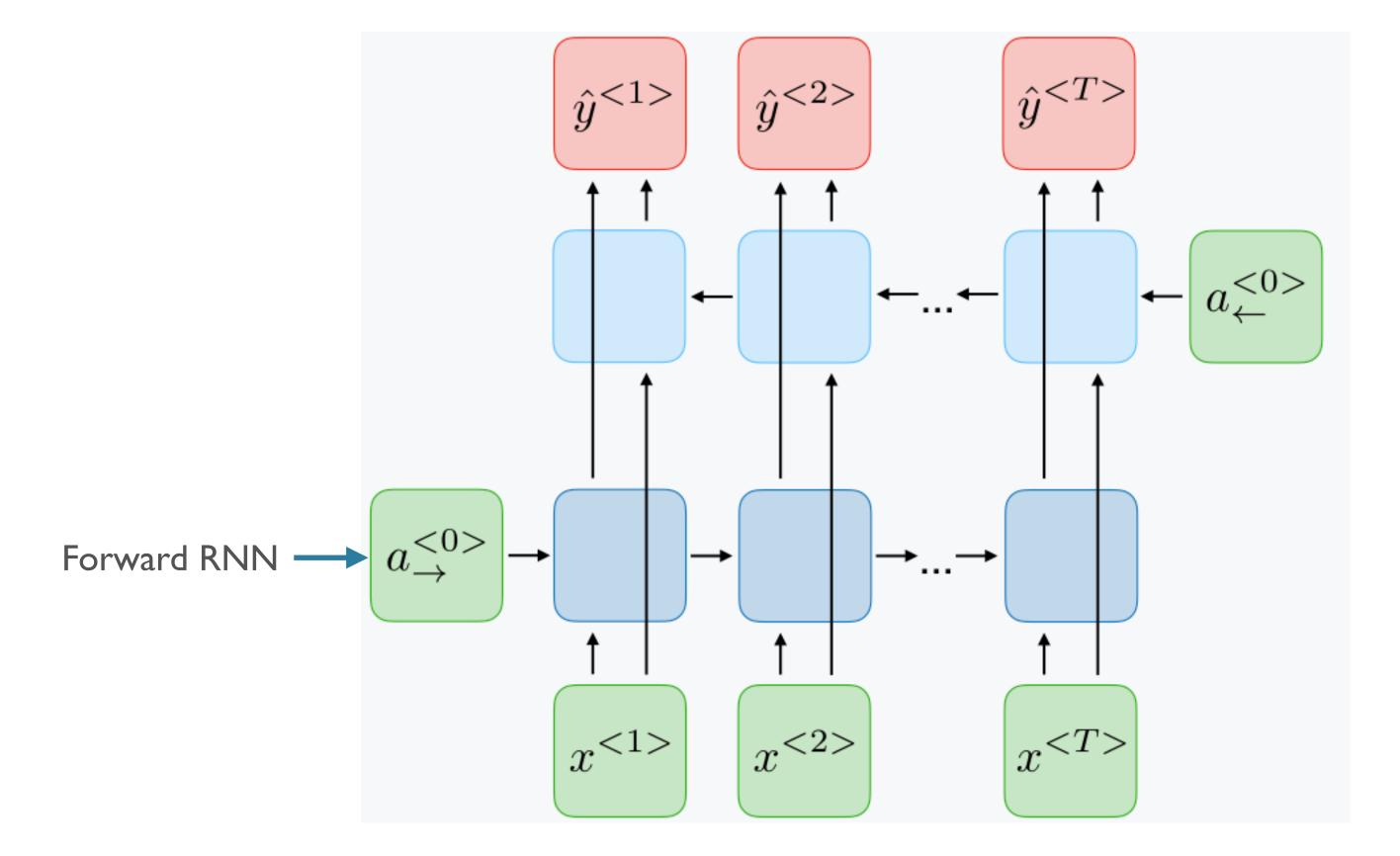
Deep RNNs:



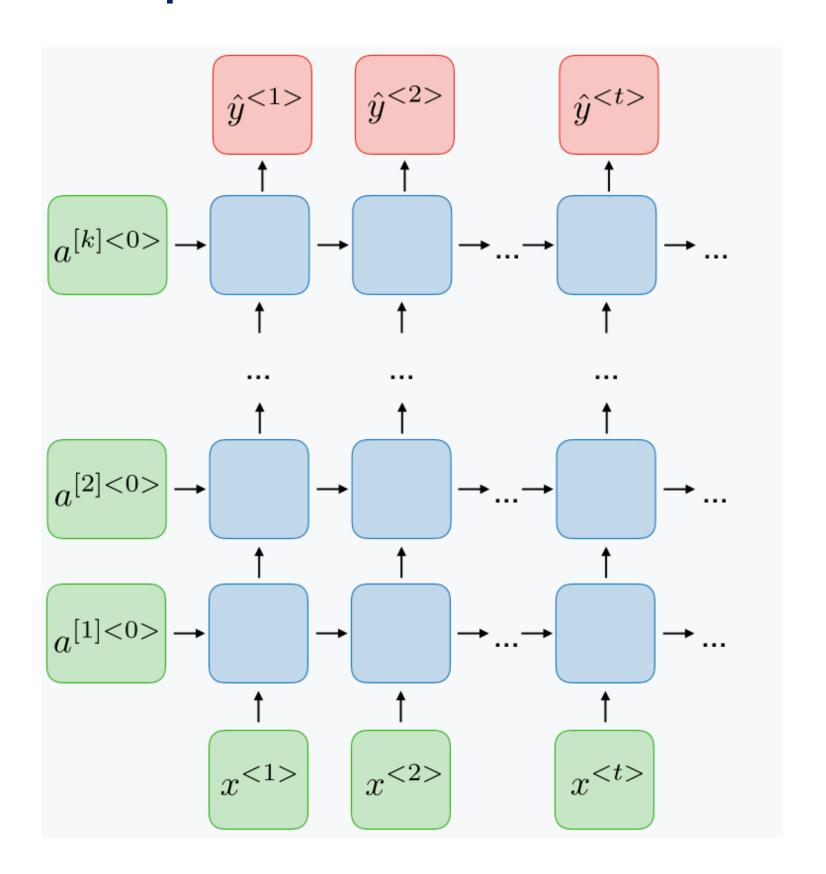


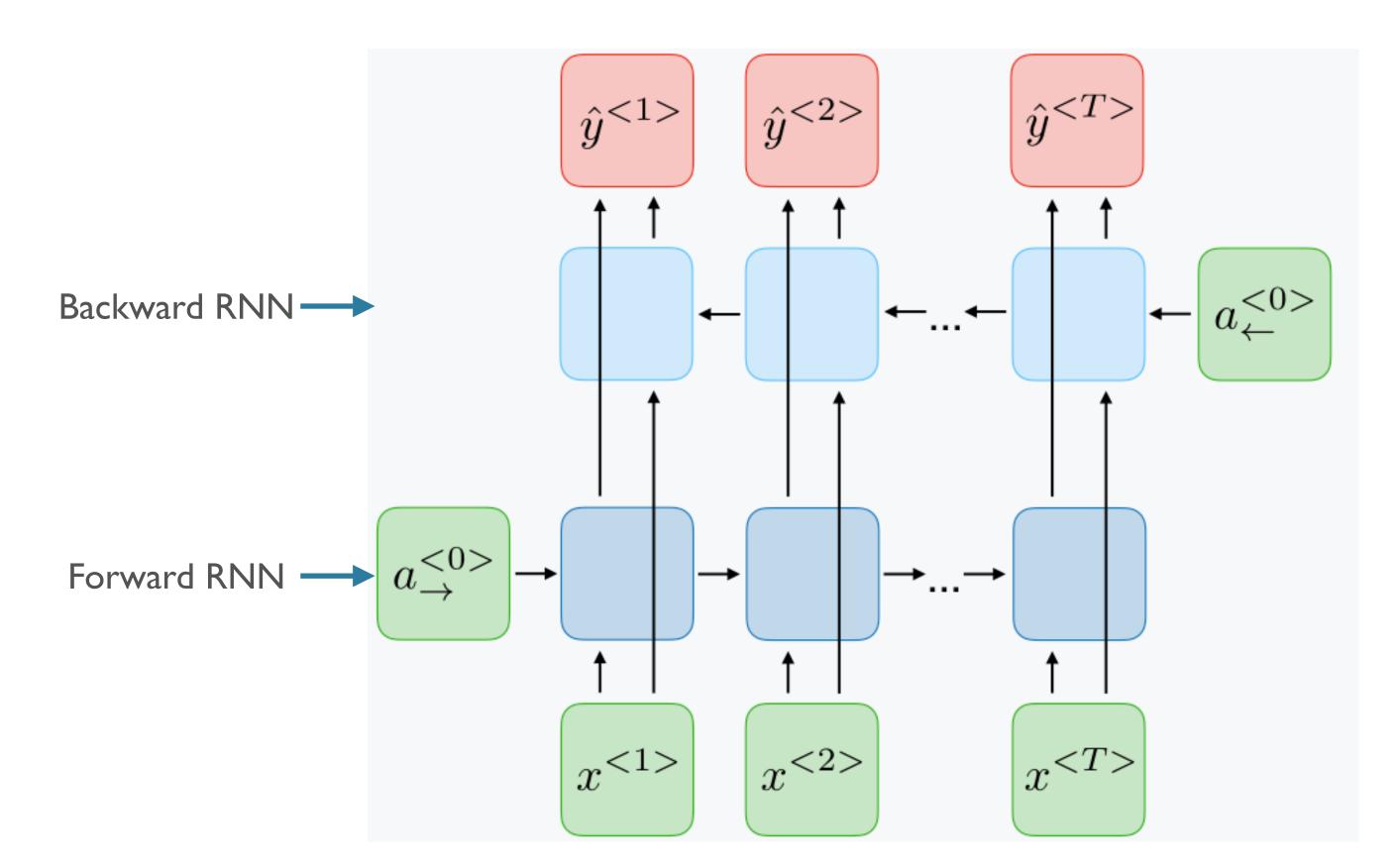
Deep RNNs:



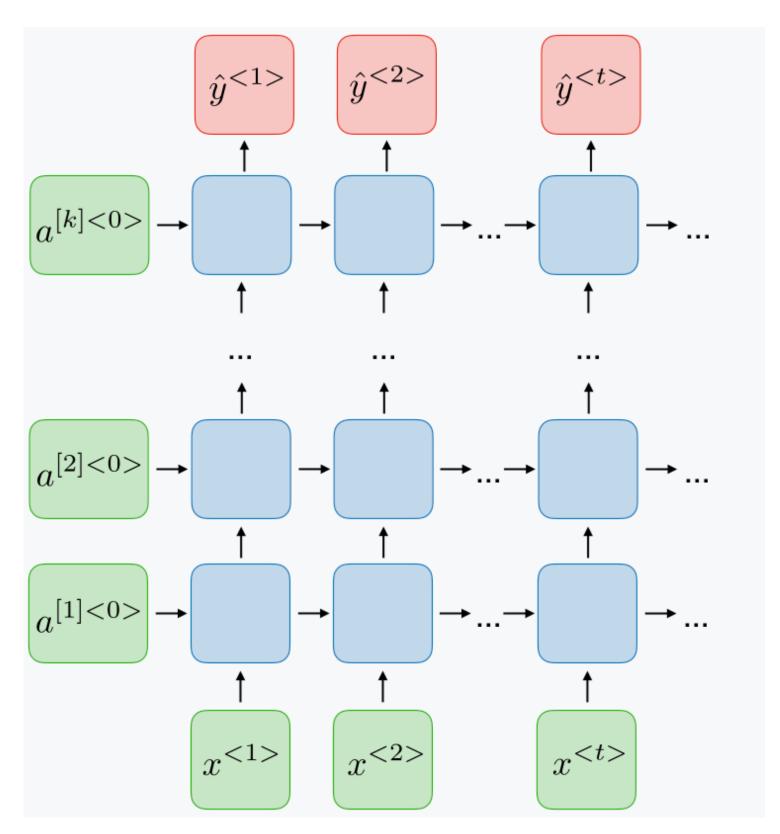


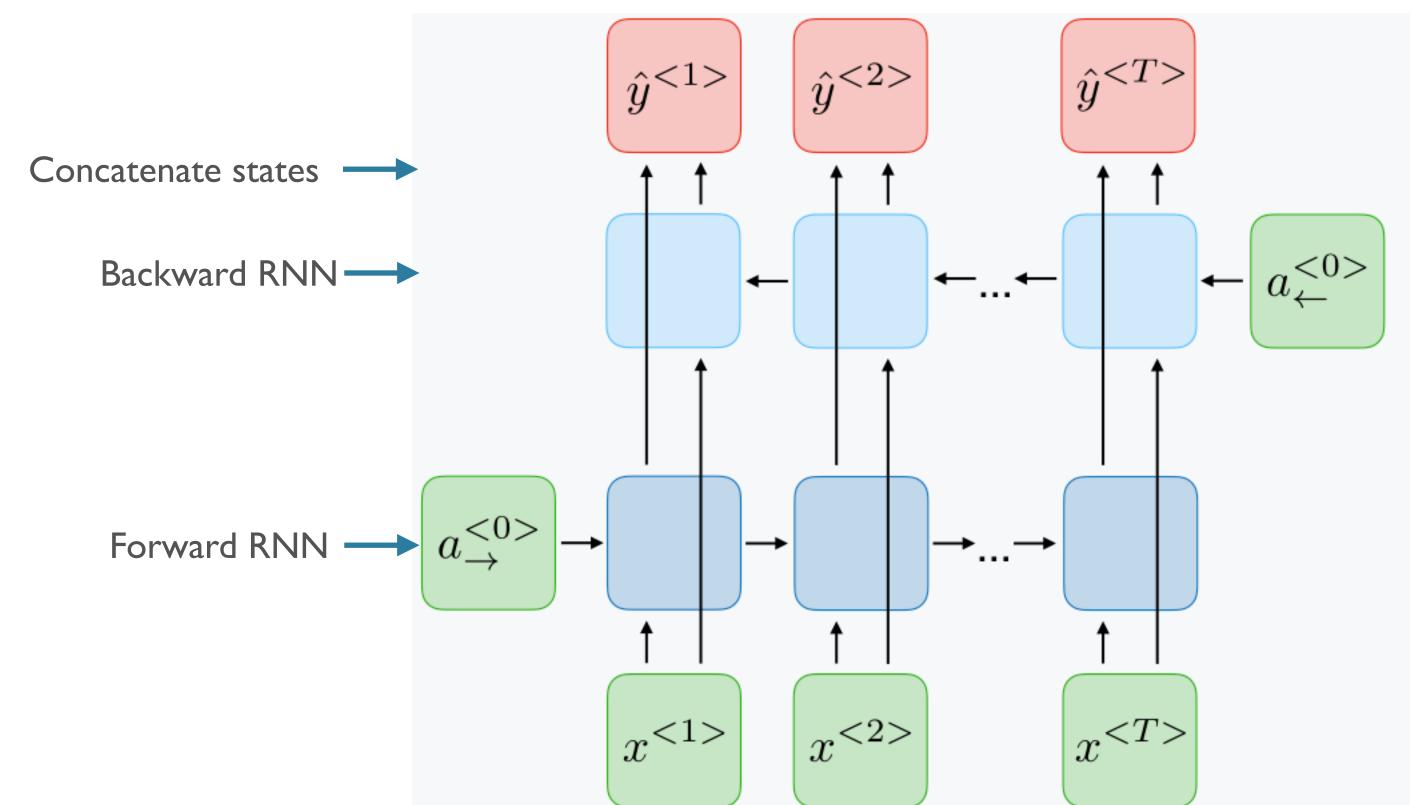
Deep RNNs:





Deep RNNs:





Batching in RNNs

- Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]
- But what is sequence length??
 - "This is the first example </s>": 6
 - "This is another </s>": 4

Padding and Masking

- Step 1: pad all sequences in batch to be of the same length
 - "This is the first example </s>": 6
 - "This is another </s> PAD PAD": 6
- Step 2: build a "mask" (1 = True token, 0 = padding)

- Step 3: use mask to tell model what to ignore, either
 - Select correct final states (classification)
 - Multiply losses in tagging tasks (LM)

Summary

- RNNs allow for neural processing of sequential data
- In principle, should help models capture **long-distance dependencies** (e.g. number agreement, selectional preferences, ...)
 - Maintain a state over time
 - Repeatedly apply the same weights
 - as opposed to n-gram models, which cannot build such dependencies
- Uses: classification, tagging
- Extensions: deep, bidirectional

Next Time

- Discuss a technical problem in training Vanilla RNNs
 - Vanishing gradients
- Introduce gating-based RNNs
 - LSTMs
 - GRUs
 - Strengths, weaknesses, differences