Pre-training + Fine-tuning Paradigm 1

Ling 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2025

Note on Transformer Architecture

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang* Hyung Won Chung Yi Tay William Fedus Thibault Fevry[†] Michael Matena [†] Karishma Malkan[†] Noah Fiedel Noam Shazeer Zhenzhong Lan[†] Yanqi Zhou Wei Li Nan Ding Jake Marcus Adam Roberts Colin Raffel

Google Research

Abstract

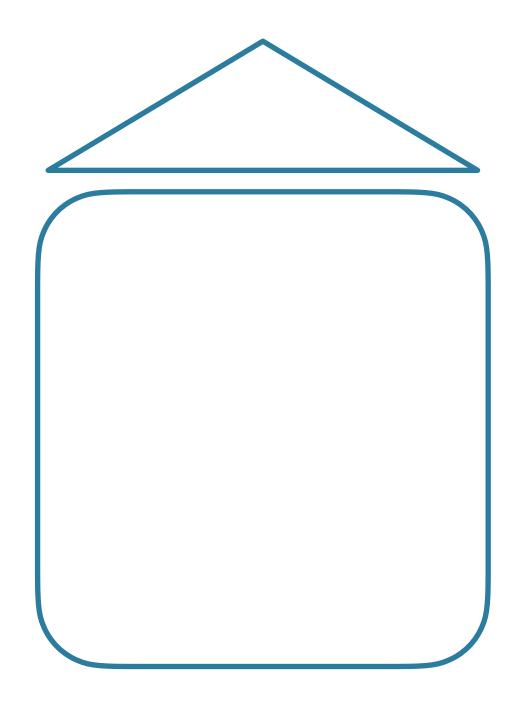
The research community has proposed copious modifications to the Transformer architecture since it was introduced over three years ago, relatively few of which have seen widespread adoption. In this paper, we comprehensively evaluate many of these modifications in a shared experimental setting that covers most of the common uses of the Transformer in natural language processing. Surprisingly, we find that most modifications do not meaningfully improve performance. Furthermore, most of the Transformer

will yield equal-or-better performance on any task that the pipeline is applicable to. For example, residual connections in convolutional networks (He et al., 2016) are designed to ideally improve performance on any task where these models are applicable (image classification, semantic segmentation, etc.). In practice, when proposing a new improvement, it is impossible to test it on every applicable downstream task, so researchers must select a few representative tasks to evaluate it on. However, the proposals that are ultimately adopted by the research community and practitioners tend to be those that reliably improve performance across a wide variety of tasks "in

Today's Plan

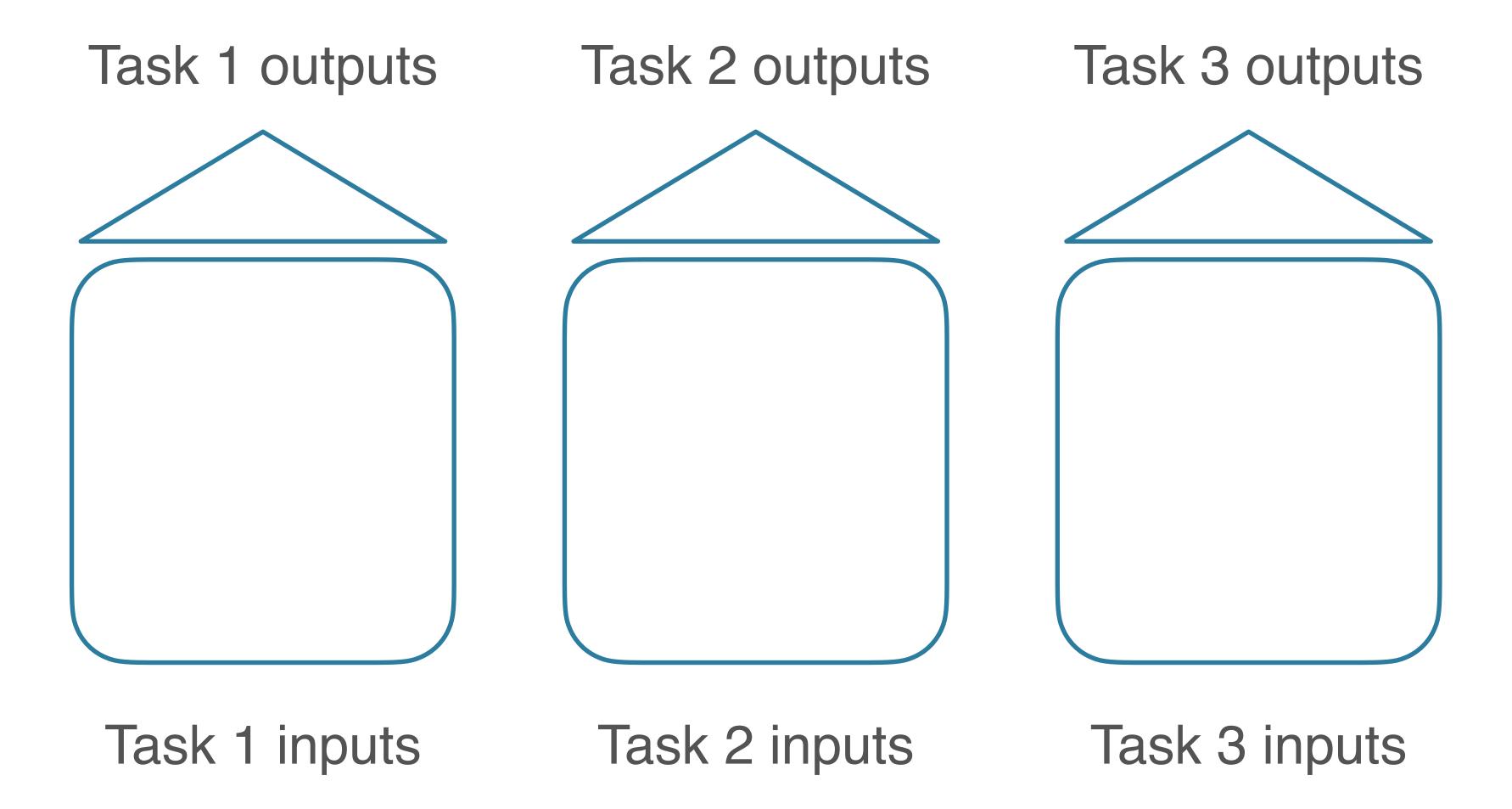
- Transfer learning in general
- Language model pre-training: initial steps
- Transformer-based pre-training
 - Encoder only
 - Decoder only
 - Encoder-Decoder
- Some limitations

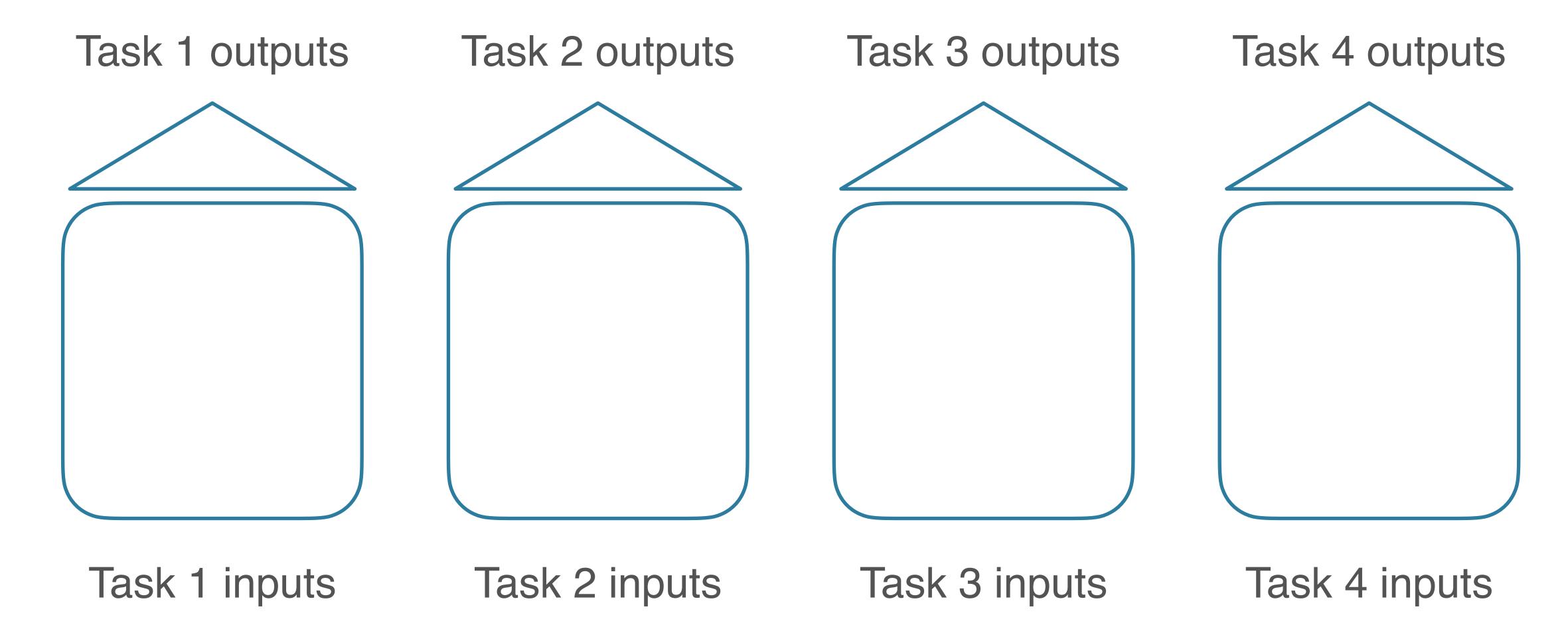
Task 1 outputs



Task 1 inputs

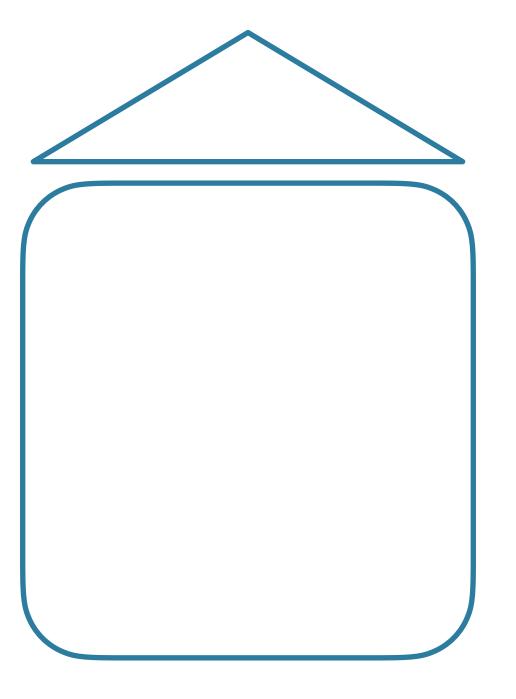






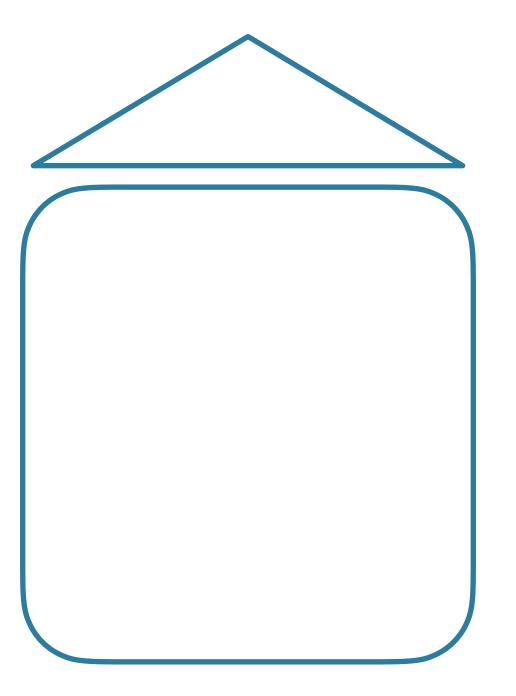
- New task = new model
- Expensive!
 - Training time
 - Storage space
 - Data availability
 - Can be impossible in low-data regimes

"pre-training" task outputs

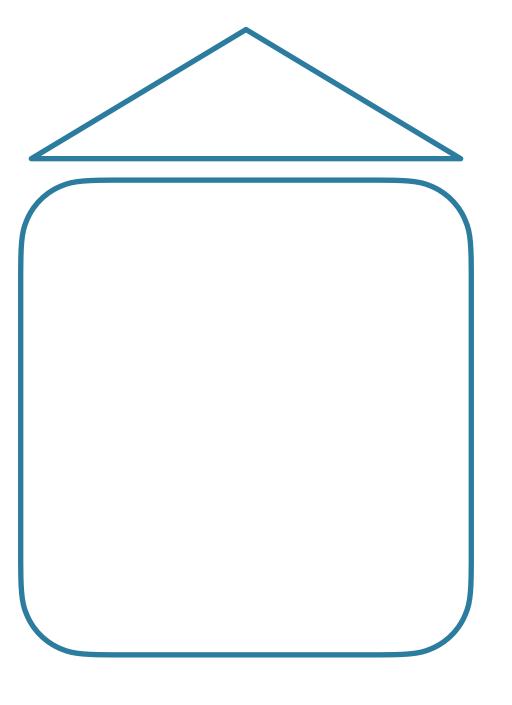


"pre-training" task inputs

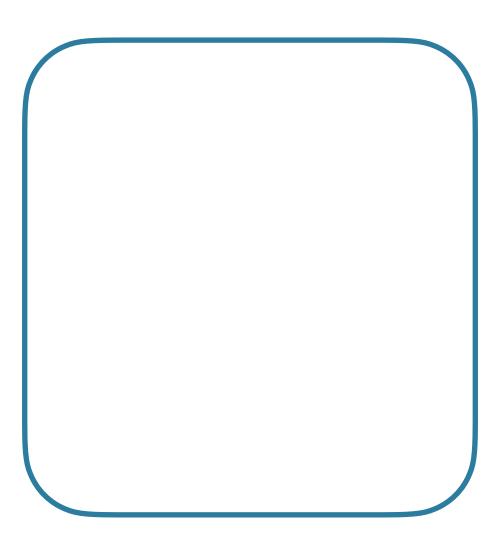
"pre-training" task outputs



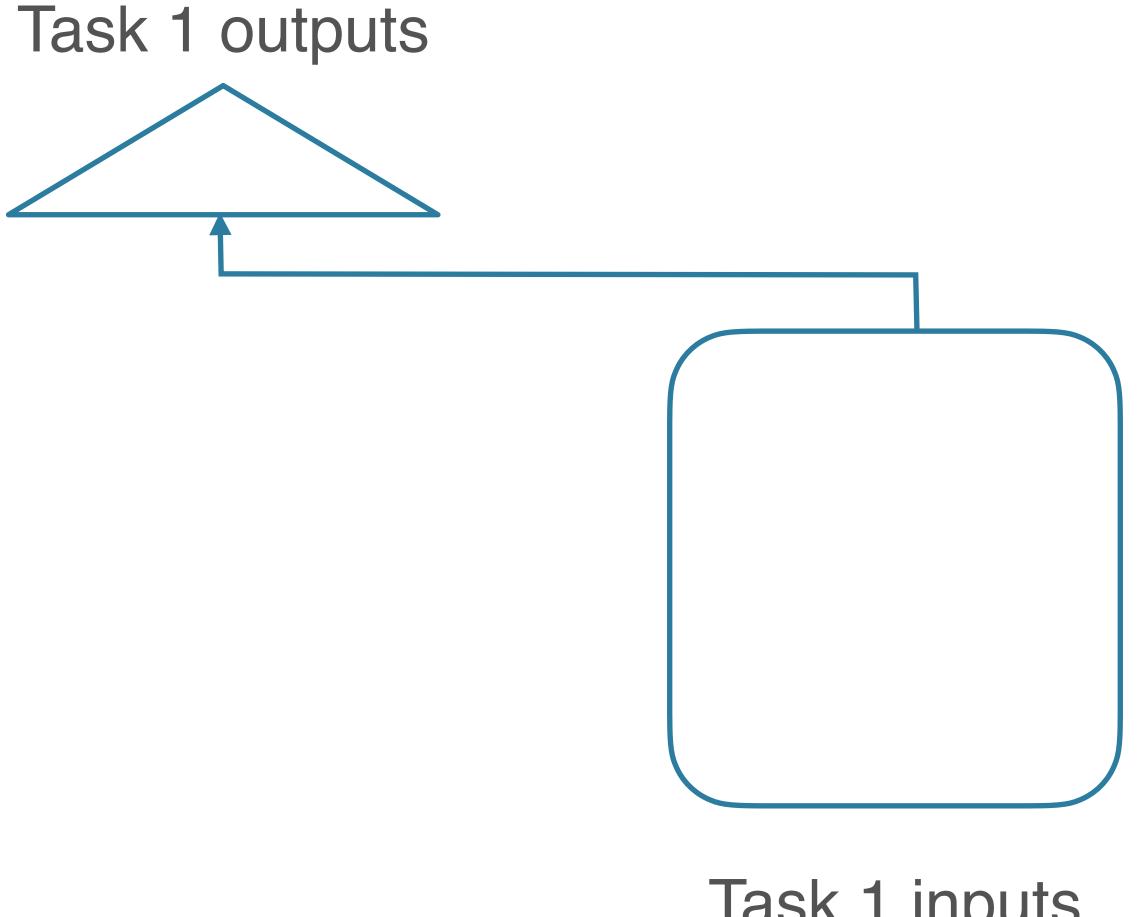
"pre-training" task outputs

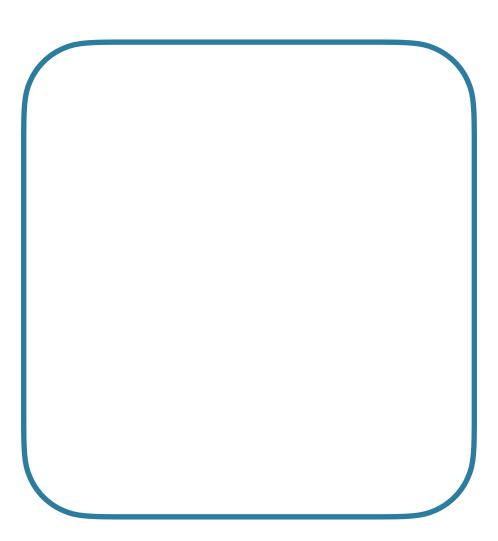


Task 1 inputs



Task 1 inputs

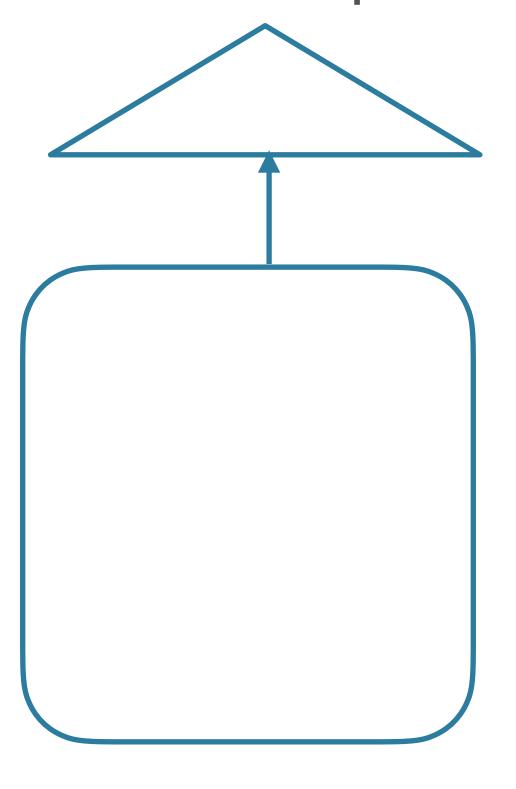




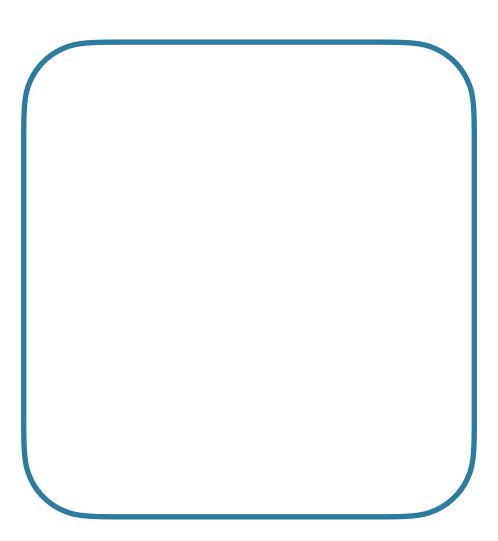


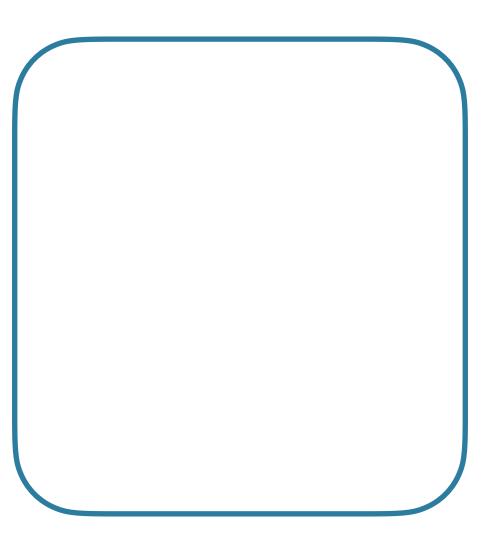
Task 2 inputs

Task 2 outputs

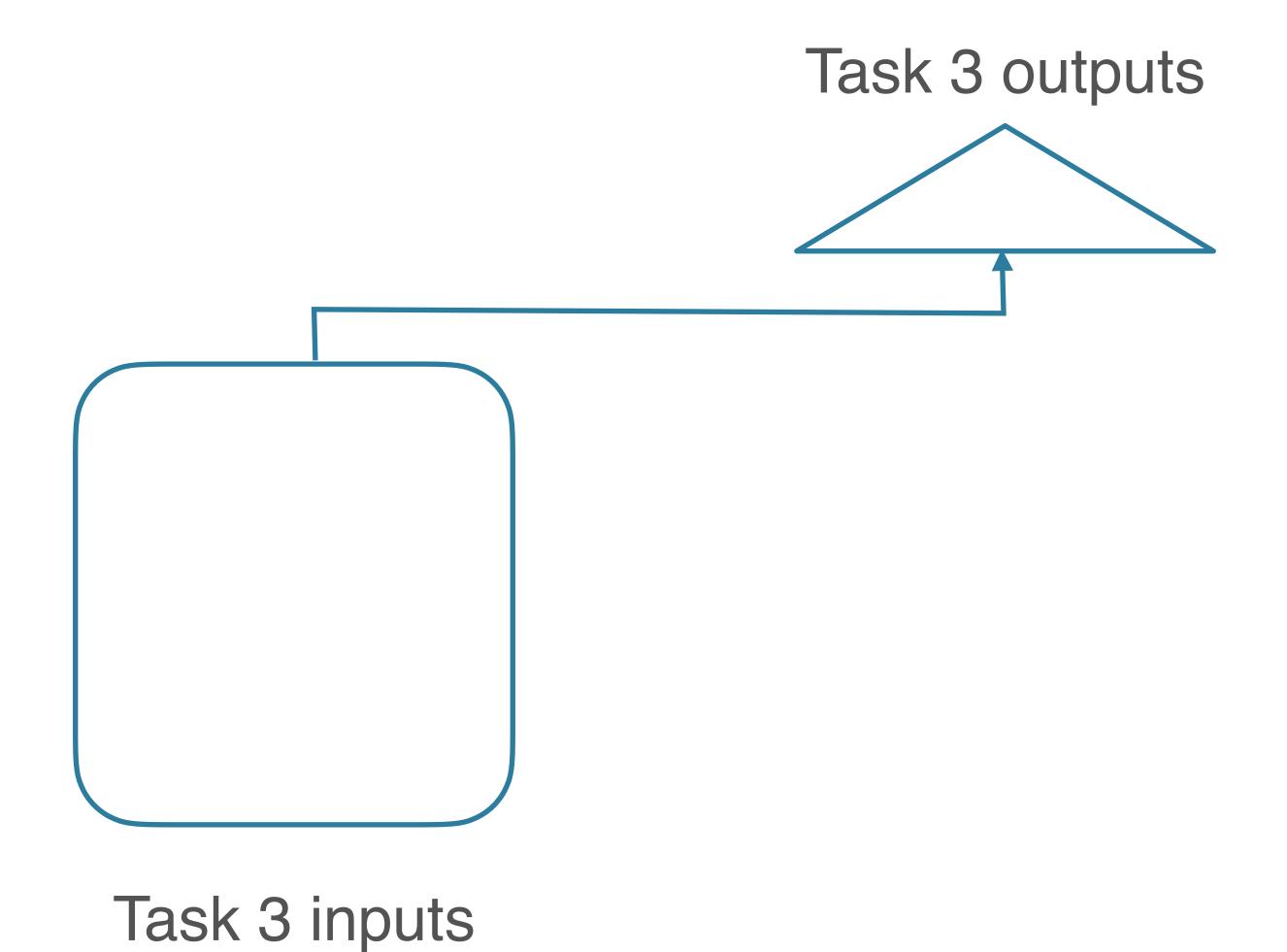


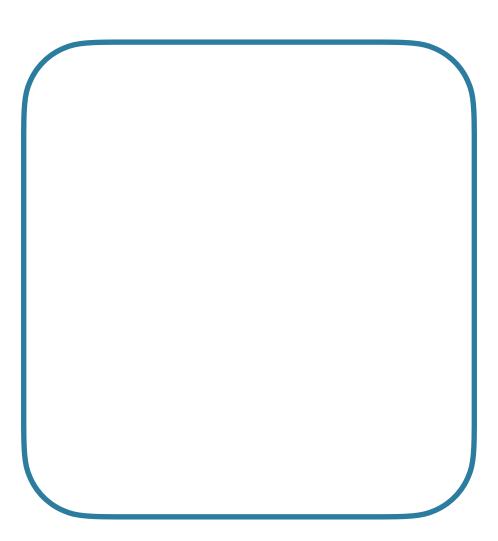
Task 2 inputs





Task 3 inputs





Pre-training + Fine-tuning

Pre-training + Fine-tuning

- Step 1: pre-train a model on a "general" task
 - Questions: which task for pre-training? More in a minute.
 - Goal: produce **general-purpose representations** of the input ("representation learning"), that will be useful when "transferred" to a more specific task.

Pre-training + Fine-tuning

- Step 1: pre-train a model on a "general" task
 - Questions: which task for pre-training? More in a minute.
 - Goal: produce **general-purpose representations** of the input ("representation learning"), that will be useful when "transferred" to a more specific task.
- Step 2: fine-tune that model on the main task
 - Replace the "head" of the model with some task-specific layers
 - Run supervised training with the resulting model

Origins in Computer Vision

"We use features extracted from the OverFeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the OverFeat network was trained to solve [cf. ImageNet]. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets"

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson CVAP, KTH (Royal Institute of Technology)

Stockholm, Sweden

{razavian,azizpour,sullivan,stefanc}@csc.kth.se

Language Model Pre-training

 Goal: find a linguistic task that will build general-purpose and transferable representations

- Goal: find a linguistic task that will build general-purpose and transferable representations
- Possibilities:

- Goal: find a linguistic task that will build general-purpose and transferable representations
- Possibilities:
 - Constituency or dependency parsing

- Goal: find a linguistic task that will build general-purpose and transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing

- Goal: find a linguistic task that will build general-purpose and transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation

- Goal: find a linguistic task that will build general-purpose and transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA

- Goal: find a linguistic task that will build general-purpose and transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA
 - ...

- Goal: find a linguistic task that will build general-purpose and transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA
 - ...
- Scalability issue: all require expensive annotation

Language Modeling

Language Modeling

 A good language model should produce good general-purpose and transferable representations

Language Modeling

- A good language model should produce good general-purpose and transferable representations
- Linguistic knowledge
 - The bicycles, even though old, were in good shape because ______...
 - The bicycle, even though old, was in good shape because ______...

Language Modeling

 A good language model should produce good general-purpose and transferable representations

Linguistic knowledge

- The bicycles, even though old, were in good shape because ______...
- The bicycle, even though old, was in good shape because _____ ...

World knowledge

- The University of Washington was founded in _____
- Seattle had a huge population boom as a launching point for expeditions to _____

Data for LM is cheap

Data for LM is cheap

Data for LM is cheap

Language Model Pre-training

- A recent powerful paradigm for training models for NLP tasks
- Pre-train a large language model on a large amount of raw text
- Fine-tune a small model on top of the LM for the task you care about
 - (or use the LM as a general feature extractor)

Deep Contextualized Word Representations

Peters et. al (2018)

- NAACL 2018 Best Paper Award
- Embeddings from Language
 Models (ELMo)
 - the OG NLP Muppet
- Idea: use a deep, bi-directional
 LM to get robust representations
 of words in a specific context

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kentonl, lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract

We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pretrained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

guage model (LM) objective on a large text corpus. For this reason, we call them ELMo (Embeddings from Language Models) representations. Unlike previous approaches for learning contextualized word vectors (Peters et al., 2017; McCann et al., 2017), ELMo representations are deep, in the sense that they are a function of all of the internal layers of the biLM. More specifically, we learn a linear combination of the vectors stacked above each input word for each end task, which markedly improves performance over just using the top LSTM layer.

Combining the internal states in this manner allows for very rich word representations. Using intrinsic evaluations, we show that the higher-level LSTM states capture context-dependent aspects of word meaning (e.g., they can be used without modification to perform well on supervised

Deep Contextualized Word Representations

Peters et. al (2018)

- NAACL 2018 Best Paper Award
- Embeddings from Language
 Models (ELMo)
 - the OG NLP Muppet
- Idea: use a deep, bi-directional
 LM to get robust representations
 of words in a specific context

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kentonl, lsz}@cs.washington.edu

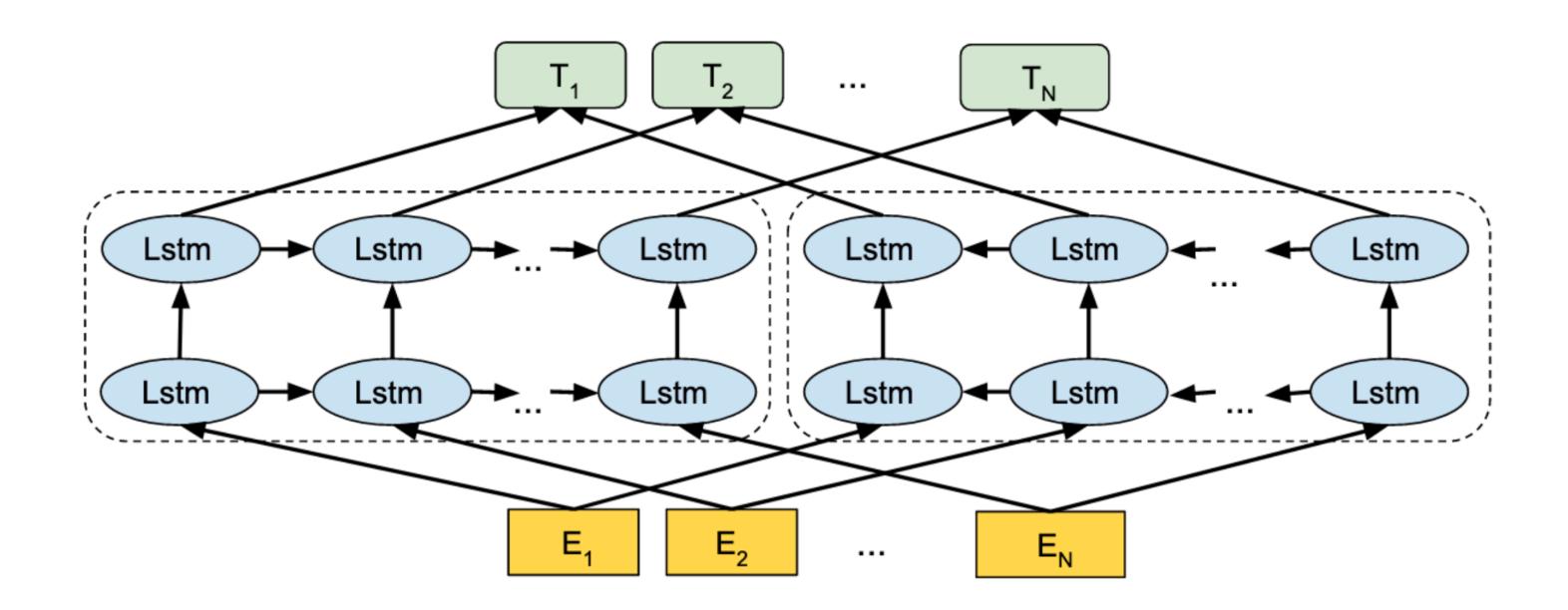
[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

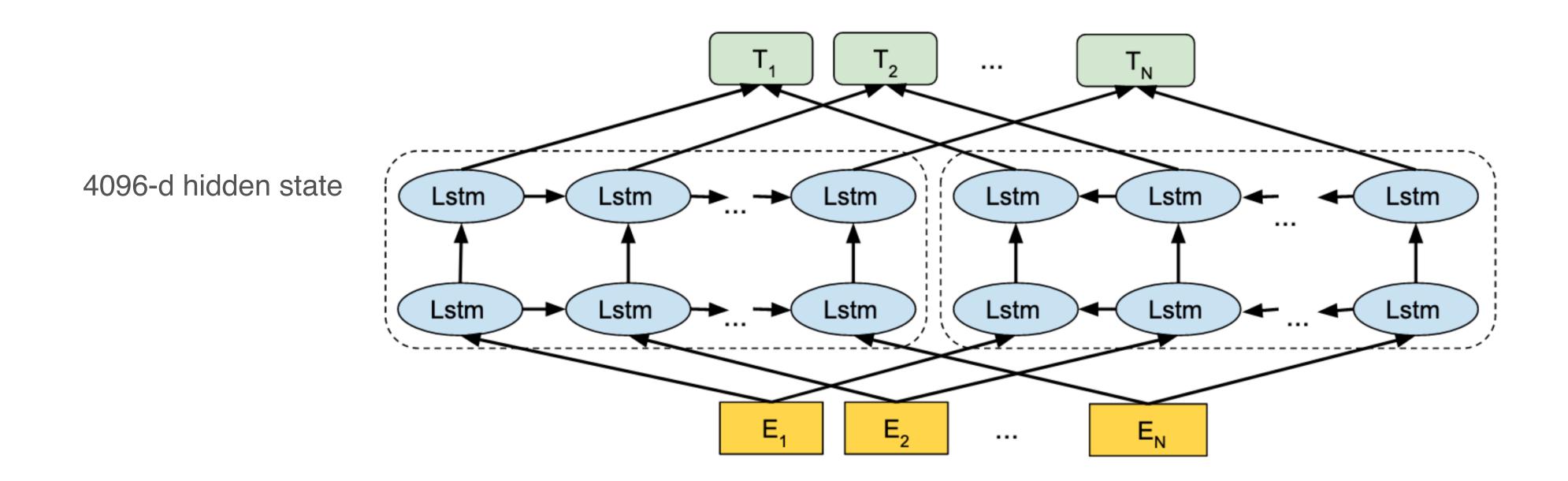
Abstract

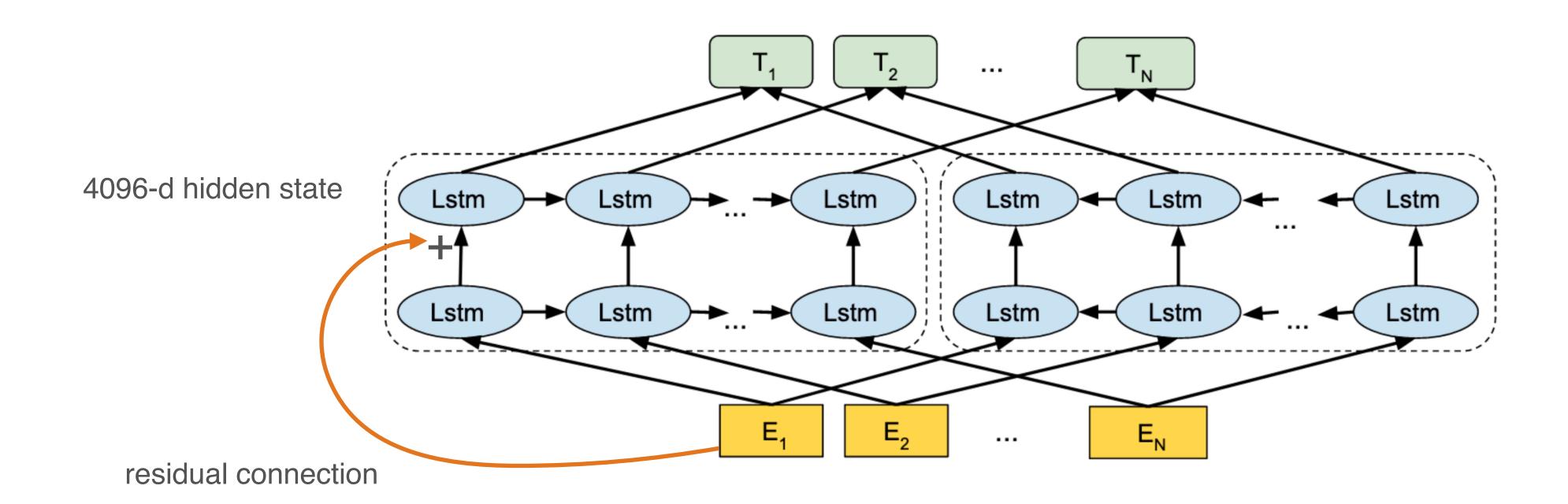
We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pretrained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

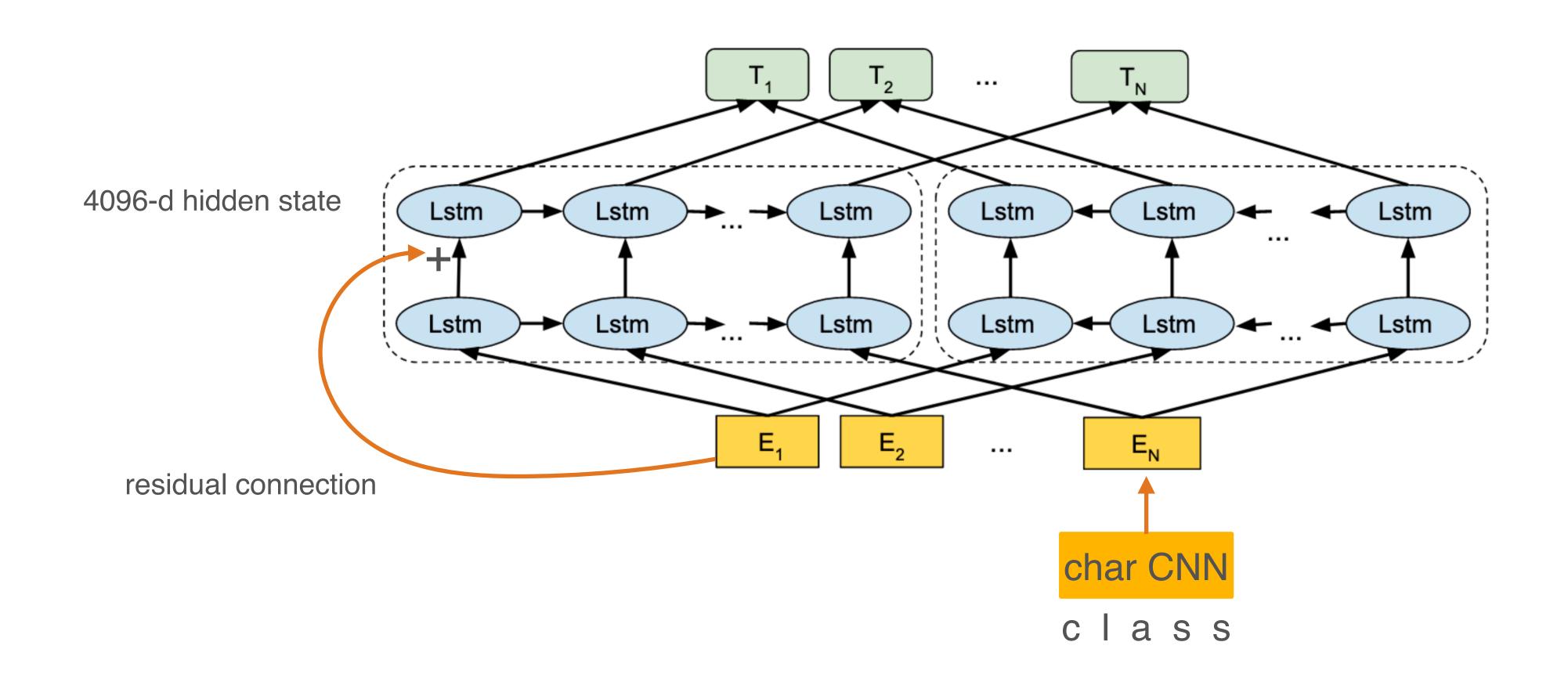
guage model (LM) objective on a large text corpus. For this reason, we call them ELMo (Embeddings from Language Models) representations. Unlike previous approaches for learning contextualized word vectors (Peters et al., 2017; McCann et al., 2017), ELMo representations are deep, in the sense that they are a function of all of the internal layers of the biLM. More specifically, we learn a linear combination of the vectors stacked above each input word for each end task, which markedly improves performance over just using the top LSTM layer.

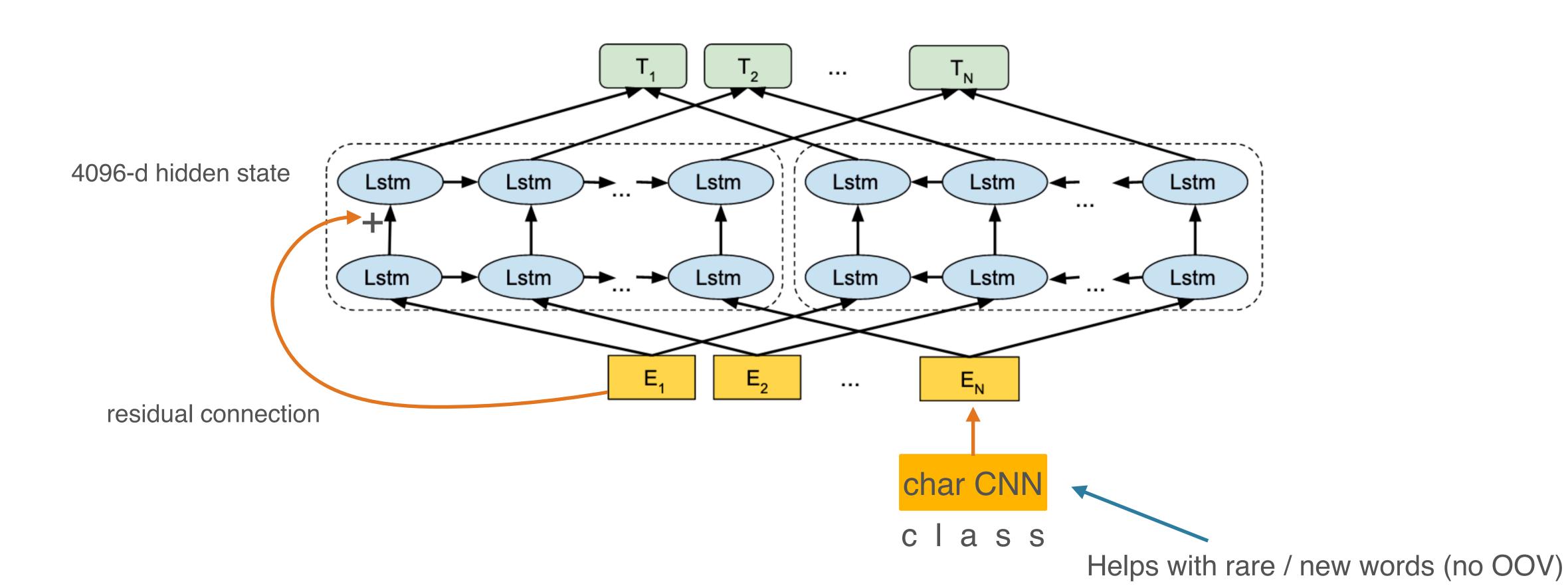
Combining the internal states in this manner allows for very rich word representations. Using intrinsic evaluations, we show that the higher-level LSTM states capture context-dependent aspects of word meaning (e.g., they can be used without modification to perform well on supervised











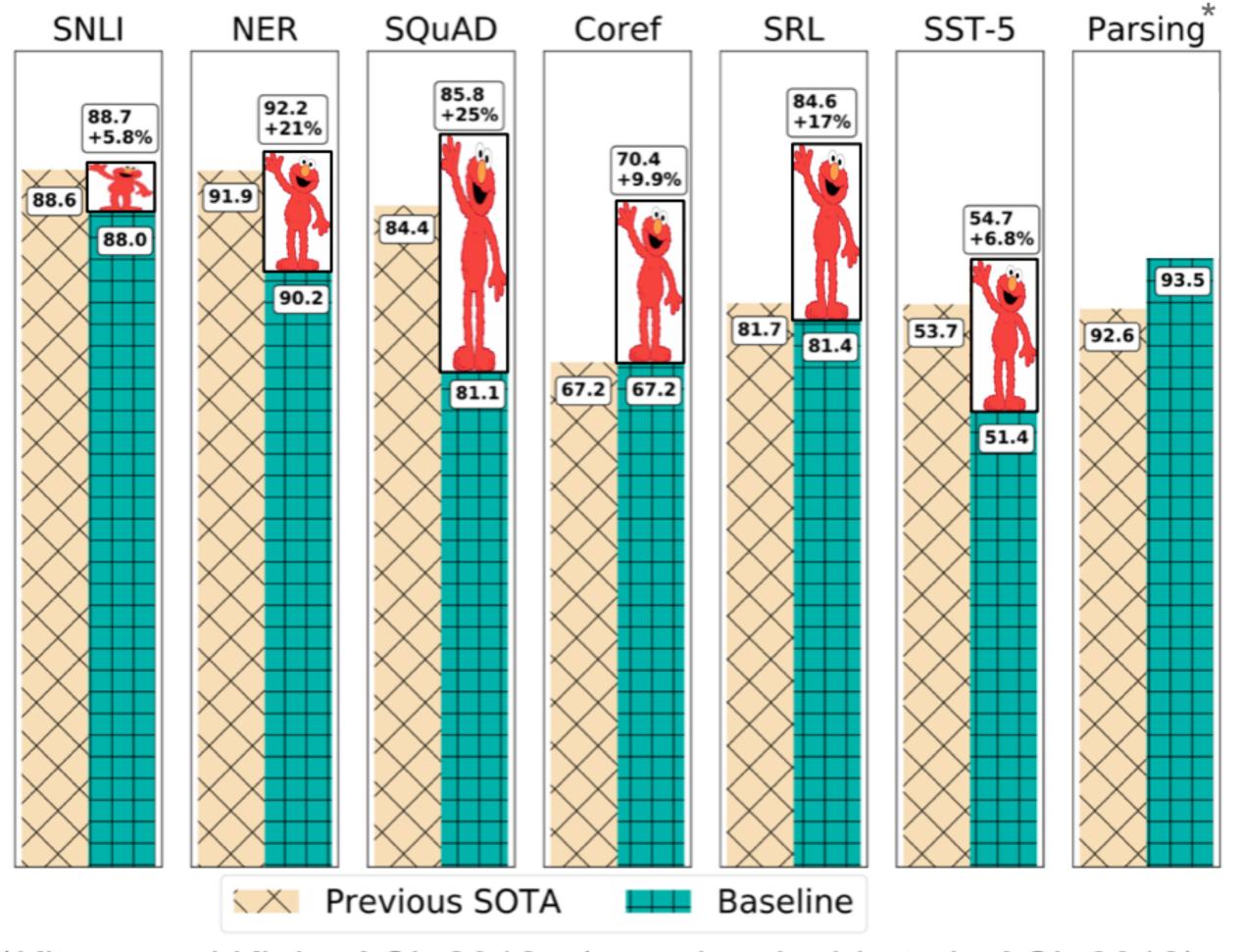
ELMo Training

- 10 epochs on <u>1B Word Benchmark</u>
- Not SOTA perplexity even at time of publishing
 - See "Exploring the Limits of Language Modeling" paper
- Regularization:
 - Dropout
 - L2 norm

Usefulness in Downstream Tasks

Peters et. al (2018)

SQuAD = Stanford Question Answering Dataset
SNLI = Stanford Natural Language Inference Corpus
SST-5 = Stanford Sentiment Treebank



*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

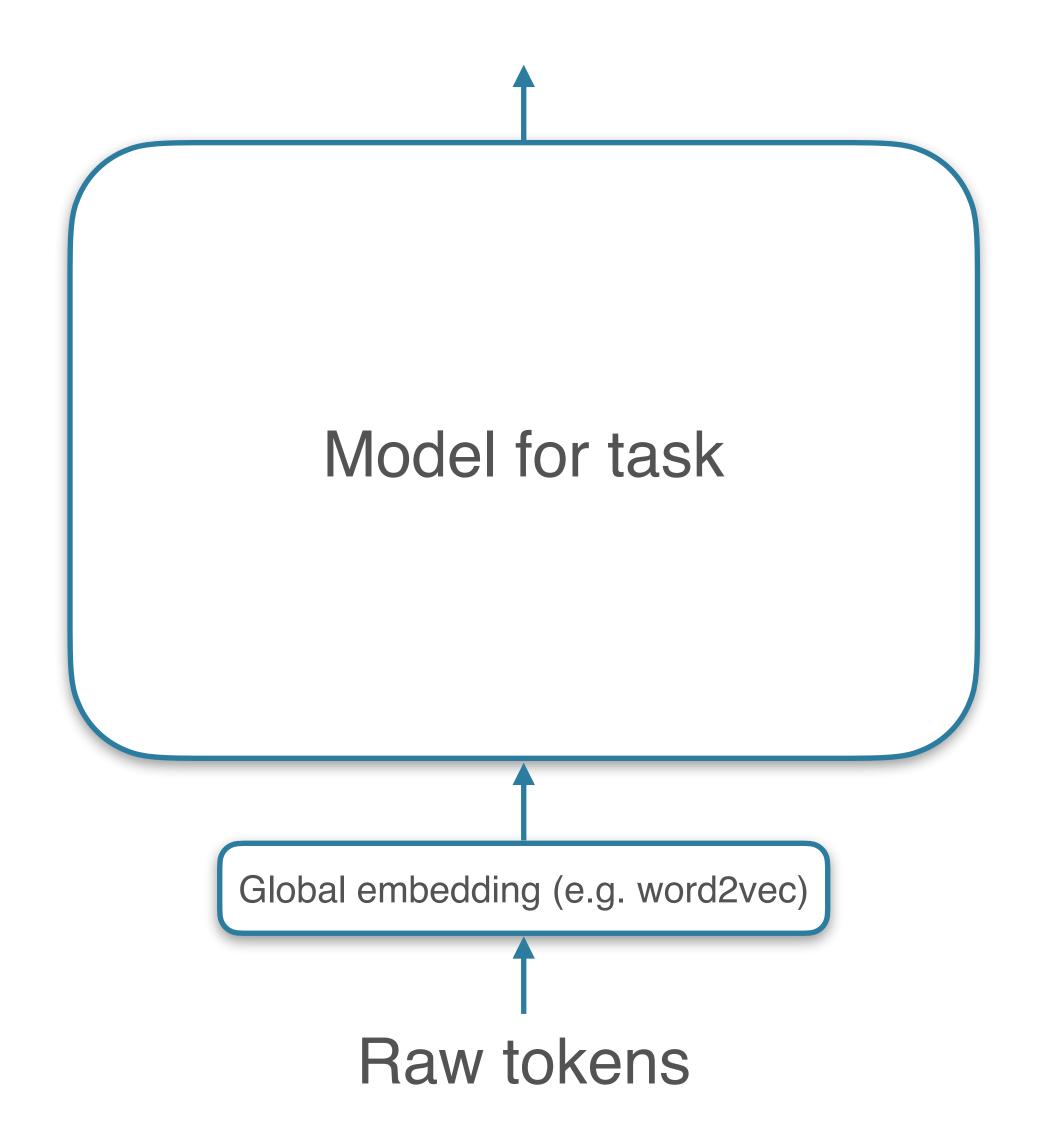
- Global vectors: one vector per word-type
 - E.g. word2vec, GloVe
 - No difference between e.g. "play" as a verb, noun, or its different senses

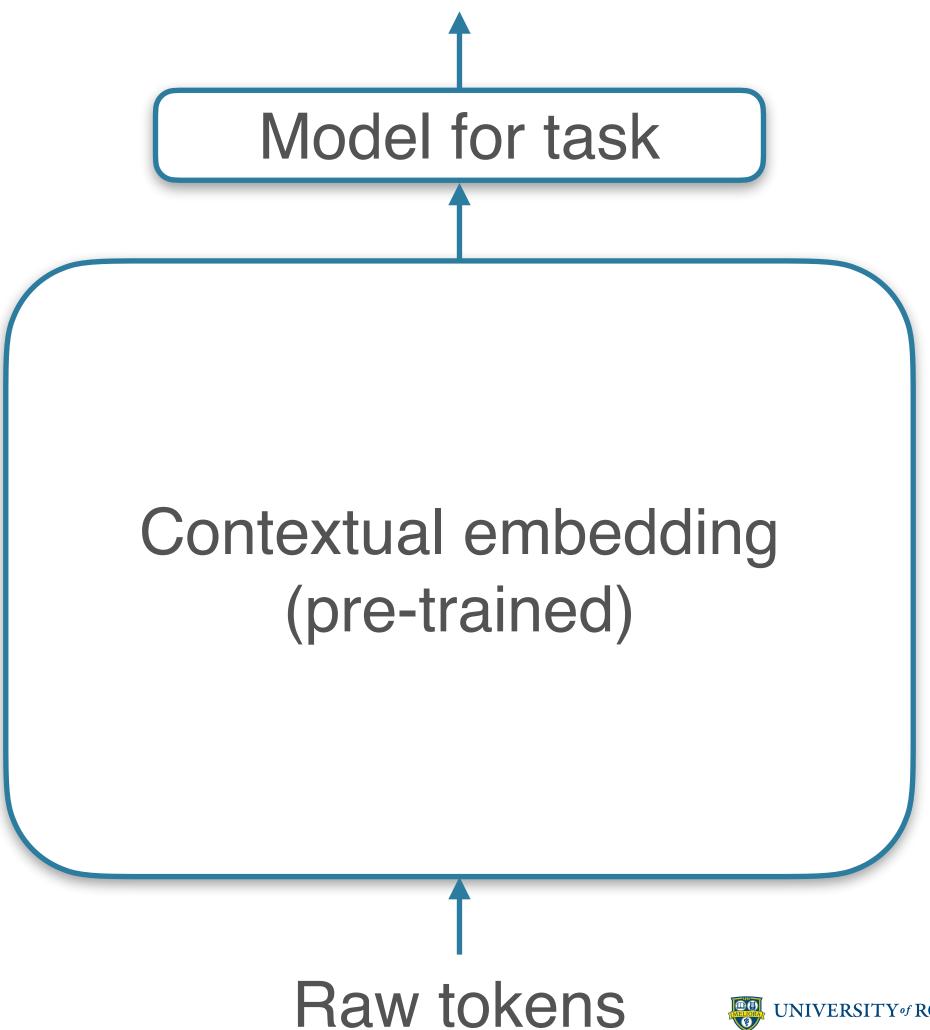
- Global vectors: one vector per word-type
 - E.g. word2vec, GloVe
 - No difference between e.g. "play" as a verb, noun, or its different senses
- Contextual vectors: one vector per word-occurrence
 - "We saw a really great play last week."
 - "Do you want to play basketball tomorrow?"
 - Each occurrence gets its own vector representation.

Peters et. al (2018)

	Source	Nearest Neighbors
Global	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
Contextual	Chico Ruiz made a spectacular play on Alusik's grounder	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round excellent play.
	Olivia De Havilland signed to do a Broadway play for Garson	they were actors who had been handed fat roles in a successful play , and had talent enough to fill the roles competently, with nice understatement.

Shallow vs Deep Pre-training





Current Circa-2021 Benchmarks

∷ SuperGLUE	™ GLUE					Pa	per	Code 🚍	Tasks 9	Leader	board	FAQ	🟦 Diagn	ostics 🗸
			Leaderboard	d Versi	on: 2.0)								
	Rank Name	Model	URL	Score	BoolQ	СВ	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-g	AX-b
	1 Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain	n)	90.4	91.4	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	92.7/91.9	69.1
	→ 2 DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	93.3/93.8	66.7
	3 SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
	4 T5 Team - Google	T5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	92.7/91.9	65.6
	+ 5 Huawei Noah's Ark Lab	NEZHA-Plus		86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	87.1/74.4	58.0
	♣ 6 Alibaba PAI&ICBU	PAI Albert		86.1	88.1	92.4/96.4	91.8	84.6/54.7	89.0/88.3	88.8	74.1	93.2	98.3/99.2	75.6
	7 Infosys : DAWN : AI Research	RoBERTa-iCETS		86.0	88.5	93.2/95.2	91.2	86.4/58.2	89.9/89.3	89.9	72.9	89.0	88.8/81.5	61.8
	♣ 8 Tencent Jarvis Lab	RoBERTa (ensemble)		85.9	88.2	92.5/95.6	90.8	84.4/53.4	91.5/91.0	87.9	74.1	91.8	89.3/75.6	57.6
	9 Zhuiyi Technology	RoBERTa-mtl-adv		85.7	87.1	92.4/95.6	91.2	85.1/54.3	91.7/91.3	88.1	72.1	91.8	91.0/78.1	58.5
	10 Facebook AI	RoBERTa		84.6	87.1	90.5/95.2	90.6	84.4/52.5	90.6/90.0	88.2	69.9	89.0	91.0/78.1	57.9
	+ 11 Anuar Sharafudinov	AlLabs Team, Transformers		82.6	88.1	91.6/94.8	86.8	85.1/54.7	82.8/79.8	88.9	74.1	78.8	100.0/100.0	100.0
	12 Rakesh Radhakrishnan Menon	ADAPET (ALBERT) - few-shot		76.0	80.0	82.3/92.0	85.4	76.2/35.7	86.1/85.5	75.0	53.5	85.6	100.0/50.0	-0.4
	+ 13 Timo Schick	iPET (ALBERT) - Few-Shot (32 Examples)		75.4	81.2	79.9/88.8	90.8	74.1/31.7	85.9/85.4	70.8	49.3	88.4	97.8/57.9	36.2
	14 Adrian de Wynter	Bort (Alexa AI)		74.1	83.7	81.9/86.4	89.6	83.7/54.1	49.8/49.0	81.2	70.1	65.8	96.1/61.5	48.0
	15 IBM Research AI	BERT-mtl		73.5	84.8	89.6/94.0	73.8	73.2/30.5	74.6/74.0	84.1	66.2	61.0	97.8/57.3	29.6
	16 Ben Mann	GPT-3 few-shot - OpenAl	Z	71.8	76.4	52.0/75.6	92.0	75.4/30.5	91.1/90.2	69.0	49.4	80.1	90.4/55.3	21.1
	17 SuperGLUE Baselines	BERT++	BERT	1.5	79.0	84.8/90.4	73.8	70.0/24.1	72.0/71.3	79.0	69.6	64.4	99.4/51.4	38.0
		BERT	Z	69.0	77.4	75.7/83.6	70.6	70.0/24.1	72.0/71.3	71.7	69.6	64.4	97.8/51.7	23.0
		Most Frequent Class		47.1	62.3	21.7/48.4	50.0	61.1/0.3	33.4/32.5	50.3	50.0	65.1	100.0/50.0	0.0
		CBoW		44.5	62.2	49.0/71.2	51.6	0.0/0.5	14.0/13.6	49.7	53.1	65.1	100.0/50.0	-0.4

Pre-trained Transformers

- ELMo
 - Demonstrates the value of LM pre-training + transfer
 - Noted that there are "virtually unlimited" quantities of data for LM
 - Used bi-LSTMs for the LM

- ELMo
 - Demonstrates the value of LM pre-training + transfer
 - Noted that there are "virtually unlimited" quantities of data for LM
 - Used bi-LSTMs for the LM
- Concurrently: Transformer paper introduced

- ELMo
 - Demonstrates the value of LM pre-training + transfer
 - Noted that there are "virtually unlimited" quantities of data for LM
 - Used bi-LSTMs for the LM
- Concurrently: Transformer paper introduced
- Triggered an explosion in the pre-training approach
 - Lack of recurrence \rightarrow paralellizability \rightarrow scaling up both the **model** and **dataset**

Pre-trained Transformers: Encoder-only

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al NAACL 2019

Encoder Representations from Transformers:

- Encoder Representations from Transformers:
- Bidirectional: ...?
 - BiLSTM (ELMo): left-to-right and right-to-left
 - Self-attention: every token can see every other
 - Adirectional / Non-directional is probably a better term

- Encoder Representations from Transformers:
- Bidirectional: ...?
 - BiLSTM (ELMo): left-to-right and right-to-left
 - Self-attention: every token can see every other
 - Adirectional / Non-directional is probably a better term
- How do you treat the encoder as an LM computing $P(w_t | w_{t-1}, w_{t-2}, ..., w_1)$?
 - You don't: modify the Language Modeling task instead

Masked Language Modeling

Masked Language Modeling

• ("Causal") Language Modeling: next word prediction

Masked Language Modeling

- ("Causal") Language Modeling: next word prediction
- Masked Language Modeling (a.k.a. Cloze task): fill-in-the-blank
 - Nancy Pelosi sent the articles of _____ to the Senate.
 - Seattle ____ some snow, so UW was delayed due to ____ roads.

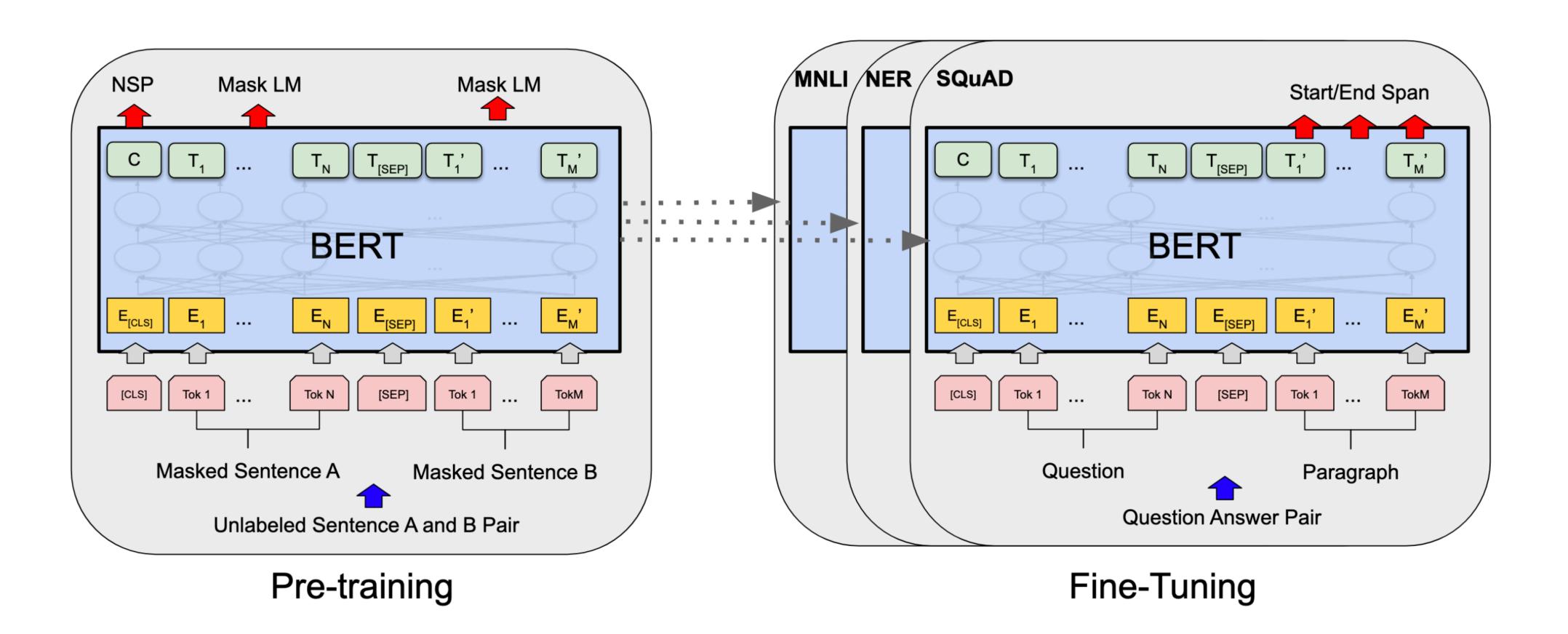
Masked Language Modeling

- ("Causal") Language Modeling: next word prediction
- Masked Language Modeling (a.k.a. Cloze task): fill-in-the-blank
 - Nancy Pelosi sent the articles of _____ to the Senate.
 - Seattle ____ some snow, so UW was delayed due to ____ roads.
- I.e. $P(w_t | w_{t+k}, w_{t+(k-1)}, ..., w_{t+1}, w_{t-1}, ..., w_{t-(m+1)}, w_{t-m})$
 - (very similar to CBOW from word2vec)

Masked Language Modeling

- ("Causal") Language Modeling: next word prediction
- Masked Language Modeling (a.k.a. Cloze task): fill-in-the-blank
 - Nancy Pelosi sent the articles of _____ to the Senate.
 - Seattle ____ some snow, so UW was delayed due to ____ roads.
- I.e. $P(w_t | w_{t+k}, w_{t+(k-1)}, \dots, w_{t+1}, w_{t-1}, \dots, w_{t-(m+1)}, w_{t-m})$
 - (very similar to CBOW from word2vec)
- Auxiliary training task: next sentence prediction
 - Given sentences A and B, binary classification: did B follow A in the corpus or not?

Schematically



- BERT-BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M

- BERT-BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- BERT-LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M

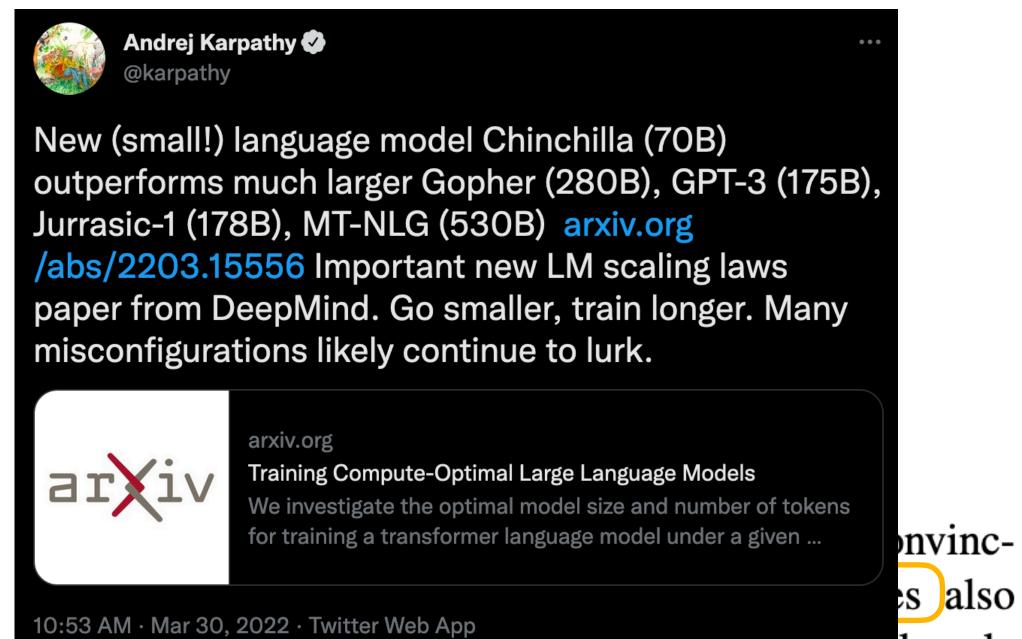
- BERT-BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- BERT-LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M

this is the first work to demonstrate convincingly that scaling to extreme model sizes also leads to large improvements on very small scale tasks, provided that the model has been sufficiently pre-trained. Peters et al. (2018b) presented

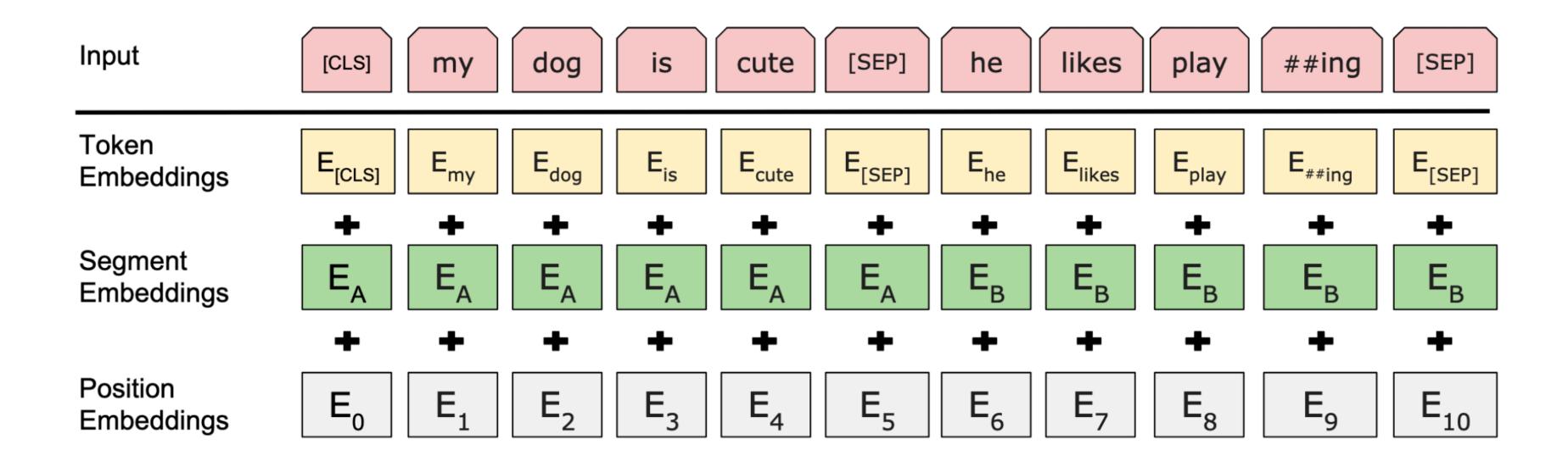
- BERT-BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- BERT-LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M

this is the first work to demonstrate convincingly that scaling to extreme model sizes also leads to large improvements on very small scale tasks, provided that the model has been sufficiently pre-trained. Peters et al. (2018b) presented

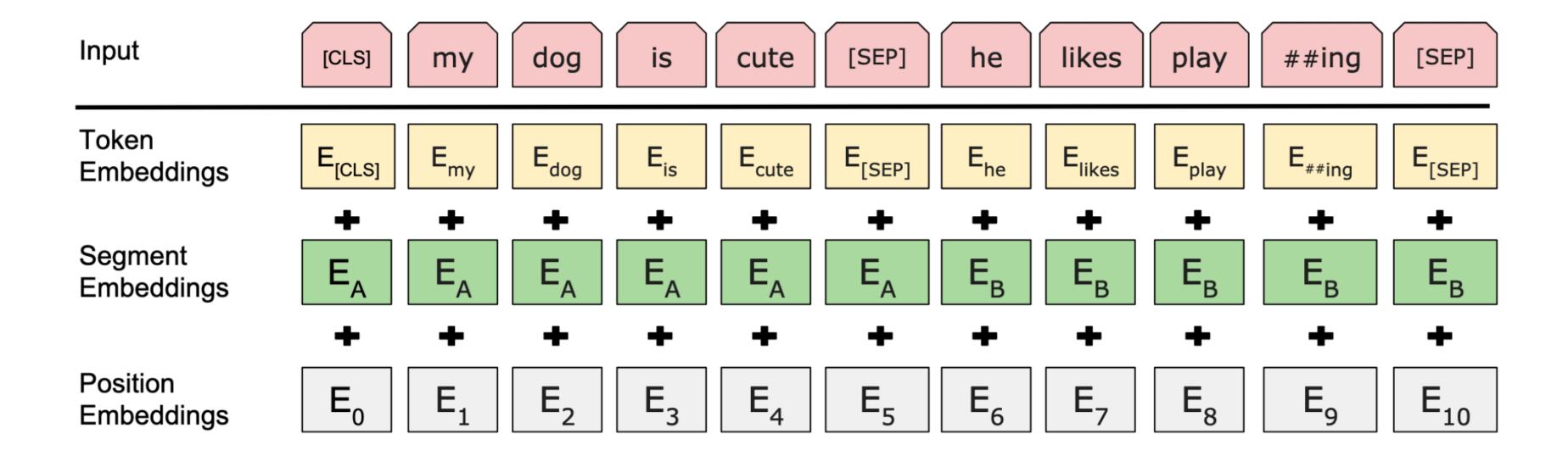
- BERT-BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- BERT-LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M



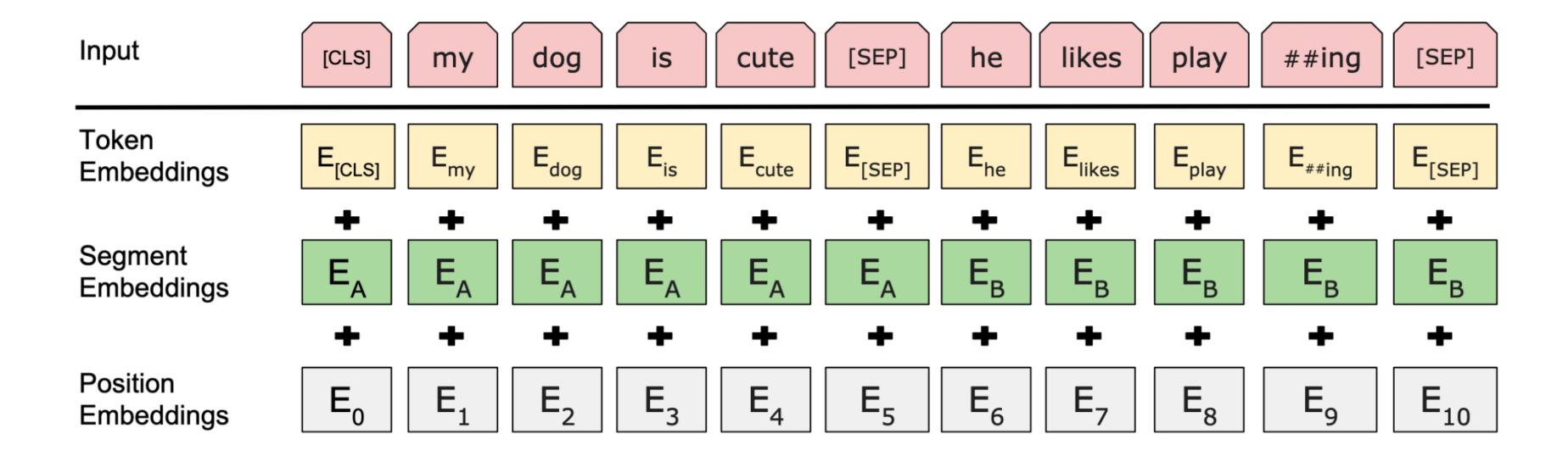
leads to large improvements on very small scale tasks, provided that the model has been sufficiently pre-trained. Peters et al. (2018b) presented



• [CLS], [SEP]: special tokens



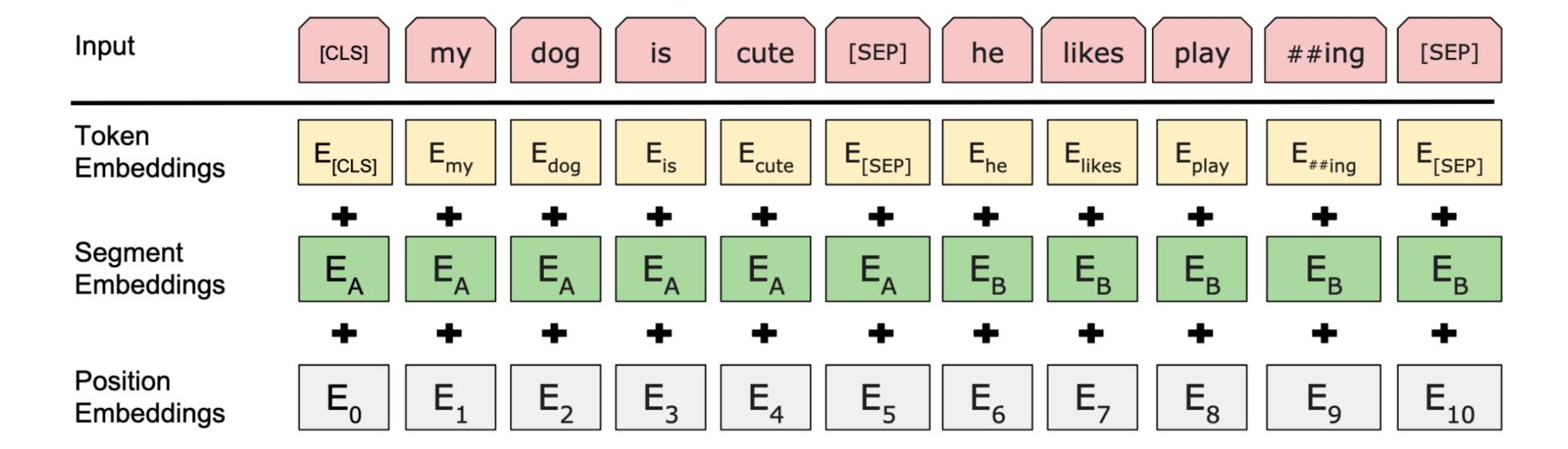
- [CLS], [SEP]: special tokens
- Segment: is this a token from sentence A or B?



- [CLS], [SEP]: special tokens
- Segment: is this a token from sentence A or B?

• Position embeddings: provide position in sequence (learned in this case,

not fixed)



BooksCorpus (800M words) + Wikipedia (2.5B)

- BooksCorpus (800M words) + Wikipedia (2.5B)
- Masking the input text: 15% of all tokens are chosen, then:
 - 80% of the time: replaced by designated [MASK] token
 - 10% of the time: replaced by random token
 - 10% of the time: unchanged

- BooksCorpus (800M words) + Wikipedia (2.5B)
- Masking the input text: 15% of all tokens are chosen, then:
 - 80% of the time: replaced by designated [MASK] token
 - 10% of the time: replaced by random token
 - 10% of the time: unchanged
- Loss is cross-entropy of the LM prediction at the masked positions

- BooksCorpus (800M words) + Wikipedia (2.5B)
- Masking the input text: 15% of all tokens are chosen, then:
 - 80% of the time: replaced by designated [MASK] token
 - 10% of the time: replaced by random token
 - 10% of the time: unchanged
- Loss is cross-entropy of the LM prediction at the masked positions
- Max seq. length: 128 tokens for first 90%, 512 tokens for final 10%

- BooksCorpus (800M words) + Wikipedia (2.5B)
- Masking the input text: 15% of all tokens are chosen, then:
 - 80% of the time: replaced by designated [MASK] token
 - 10% of the time: replaced by random token
 - 10% of the time: unchanged
- Loss is cross-entropy of the LM prediction at the masked positions
- Max seq. length: 128 tokens for first 90%, 512 tokens for final 10%
- 1M training steps, batch size 256 = 4 days on 4/16 TPUs (base/large)

Initial Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Other Prominent Encoders

- RoBERTa: robustly optimized BERT approach
 - BERT was very under-trained: give it more data, train it longer
 - (keep model the same otherwise)
 - Good default encoder
- <u>ELECTRA</u>: replace Masked Language Modeling with "replaced token detection", trains just as well with much less data
- SpanBERT: mask out entire spans instead of single tokens

Limitation of Encoders

- No left-to-right modeling assumption
- Good for NLU (understanding/comprehension) tasks
- Does not straightforwardly generate text