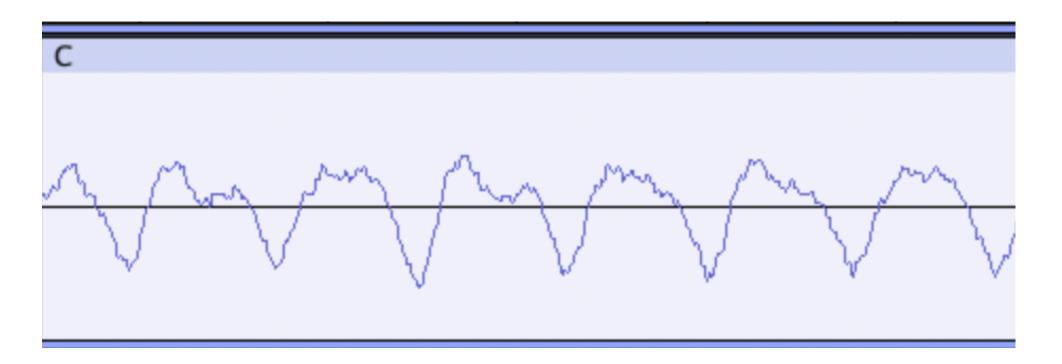
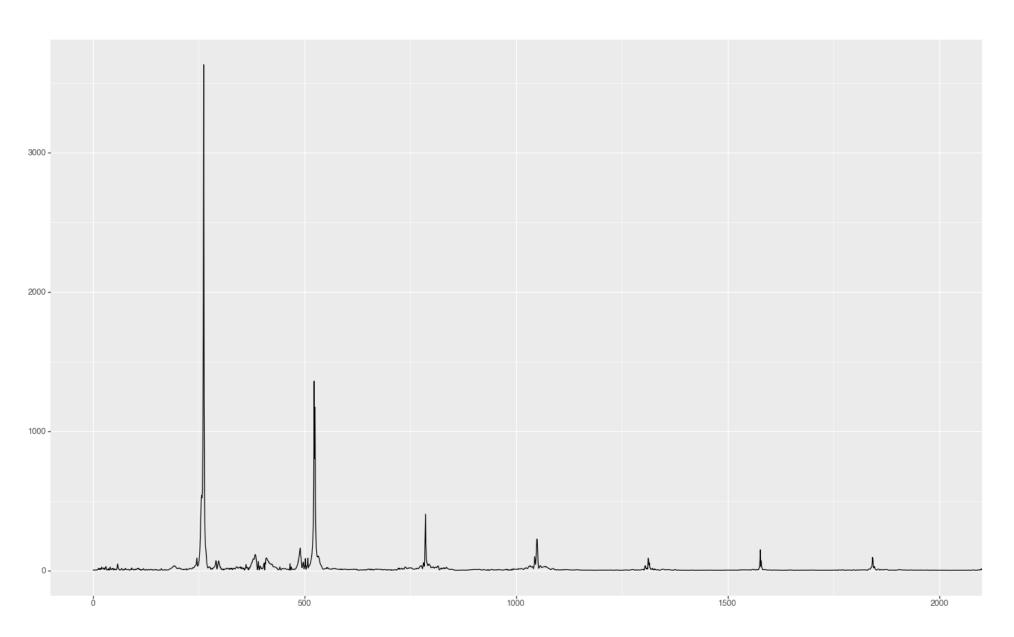
Neural Networks for Speech

Ling 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2025

Last time

- Introduction to acoustic data
- Raw sound data known as the waveform
 - Just amplitude across time ("time domain" data)
- Apply the Fourier Transform to get the spectrum of component frequencies instead ("frequency domain")

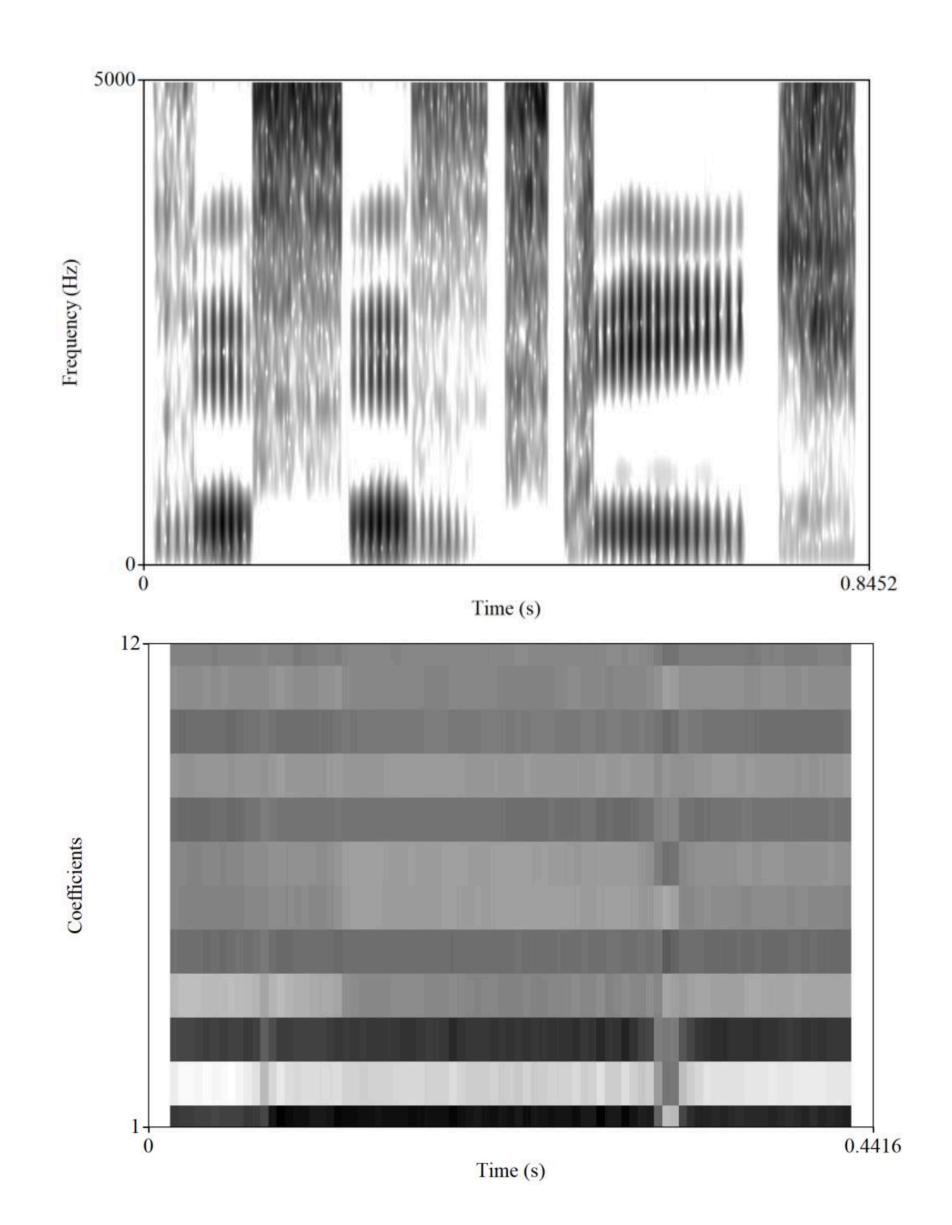




Additional signal transformations

MFCCs

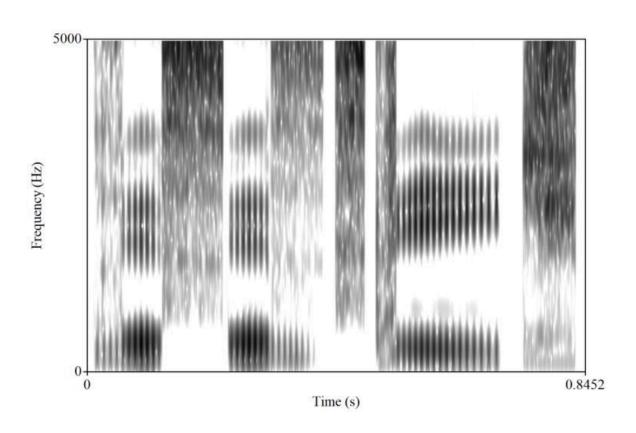
- The full FT spectrum is often resampled into Mel Frequency Cepstral Coefficients (MFCCs)
 - This is fairly advanced signal processing
 - The main point is to reduce the dimensionality of the spectrum
 - Can be thought of as a compression of the full spectrum
- Traditionally used as input to machine learning models

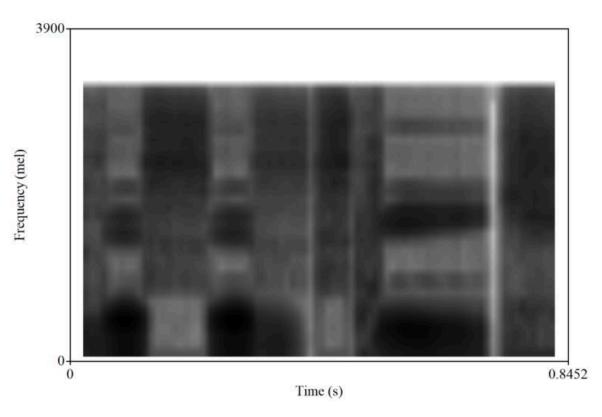


Log Mel Spectrogram

- Spectrogram may also be resampled according to the (Log) Mel
 Scale, but not reduced to MFCCs
 - The result called a Log Mel
 Spectrogram
 - Has more information than MFCCs
- Popular for Neural Networks, which don't need so much feature extraction in the input

Standard spectrogram





Mel spectrogram

Neural Modeling Overview

Speech Encoder-Decoder

- Standard task for speech processing is called Automatic Speech Recognition (ASR)
 - Essentially: speech-to-text
- Neural approaches have typically used an Encoder-Decoder model
 - Encoder learns how to usefully represent speech signal
 - Decoder outputs the corresponding text sequence

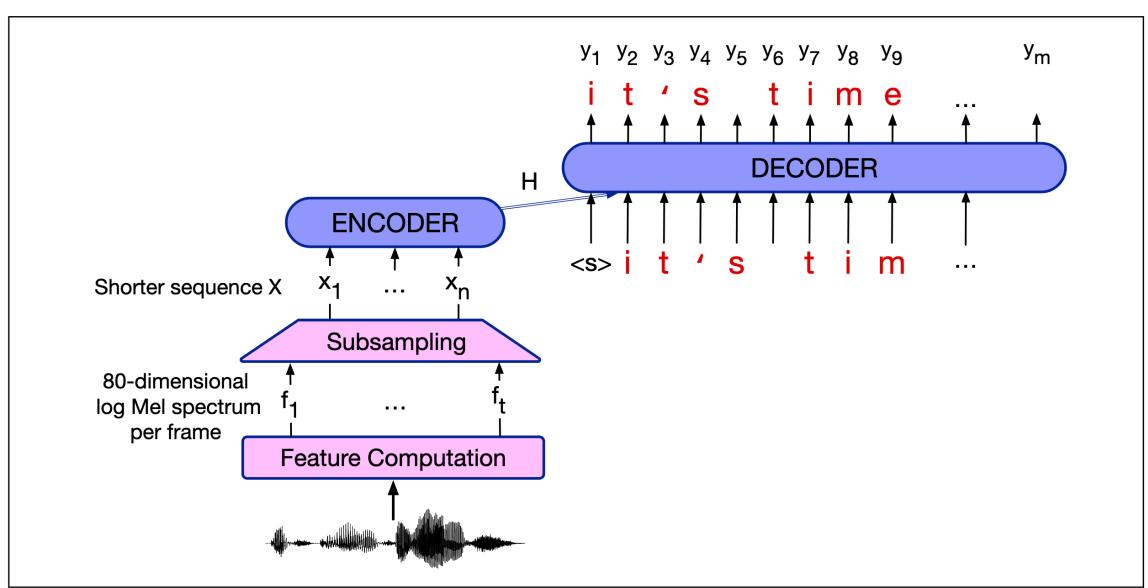


Figure 15.5 Schematic architecture for an encoder-decoder speech recognizer.

Speech Encoder-Decoder

- The main bodies of these models are often familiar architectures
 like the Transformer
- However, each has additional components to handle the more complex ASR task
- Almost all encoders use
 Convolutional Neural Networks
 (CNNs)

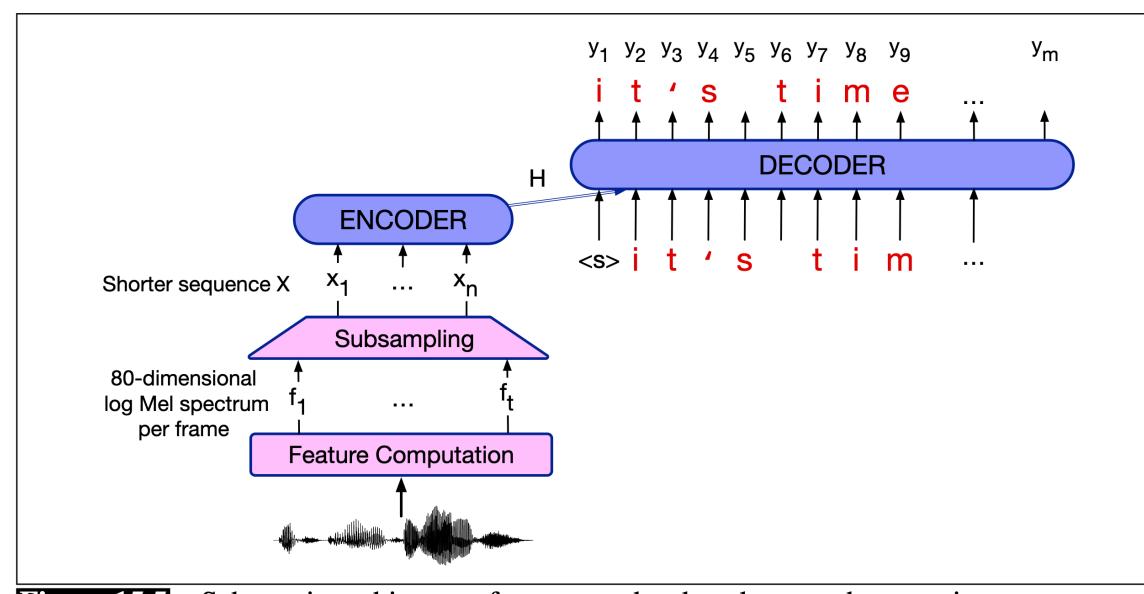


Figure 15.5 Schematic architecture for an encoder-decoder speech recognizer.

Convolutional Neural Networks

- Key intuition: a "sliding" filter called a kernel
 - Extracts information from contiguous regions of the input
 - In audio, filter is over a span of time
 - In images, an area of the image
- Essentially, take the dot product of the kernel with the input window
- Name comes from math concept of Convolution (which is slightly different)

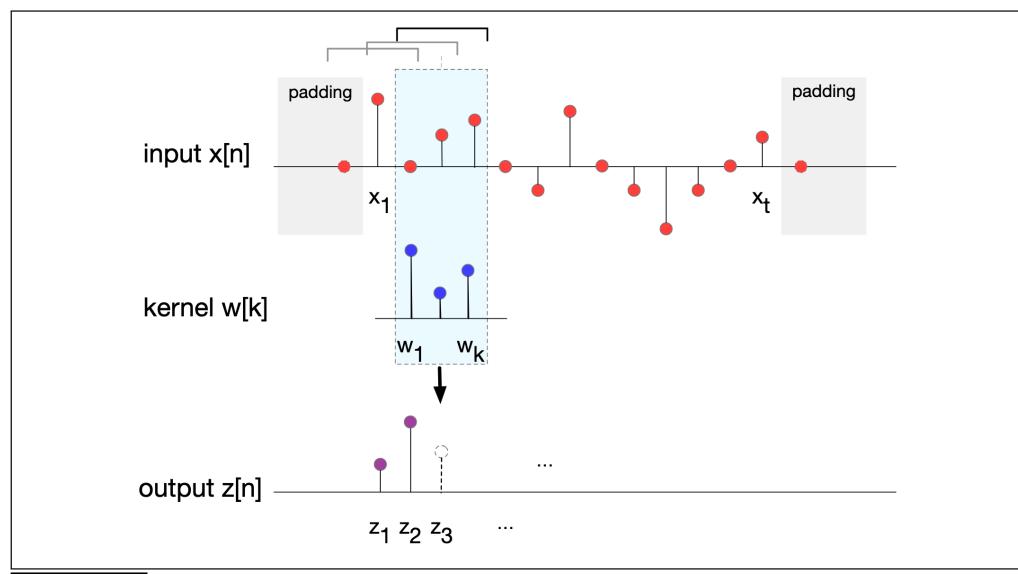


Figure 15.3 A schematic view of convolution with a kernel (filter) width of 3, and with a padding of 1, showing a zero value added at the start and end of the signal. The (already flipped) kernel is walked across the input, and the output at each frame z_i is the dot product of the kernel with the input in the window. The figure shows the computation of z_3 .

Speech CNN Layer

- The kernel contains the learned weights
- Kernel is "slid" across time
 - Has an option called stride, which controls how far to move in each step
 - Higher stride → output sequence is shorter than input
- Each embedding dimension usually called a channel

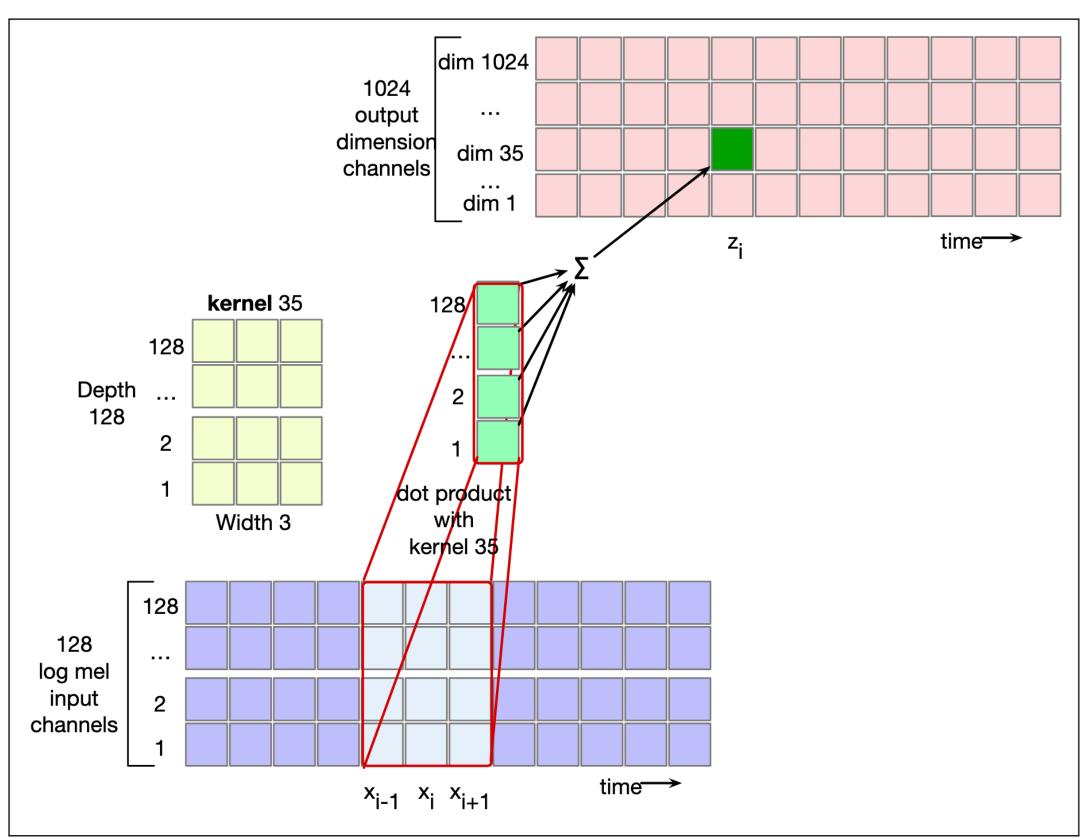


Figure 15.4 A schematic view of a convolutional net with 128 input channels and 1024 output channels. We see how at time point i one of the 1024 kernels ("kernel 35", each of depth 128 and width 3) is dot-product-ed with (each of) the 128 log mel spectrum input vectors, and then summed to produce a single value for one dimension of the output embedding at time i.

Speech CNN Layer

- For kernel length 3, 128 channels:
 - Kernel becomes size 128x3
 - However, we still treat this like a dot product: sum is taken over whole 128x3 area
 - Another way to think about it: treat the input area and kernel as single vectors, and take the dot product
 - Gives the value for a single output channel!
 - Each output channel gets a different kernel

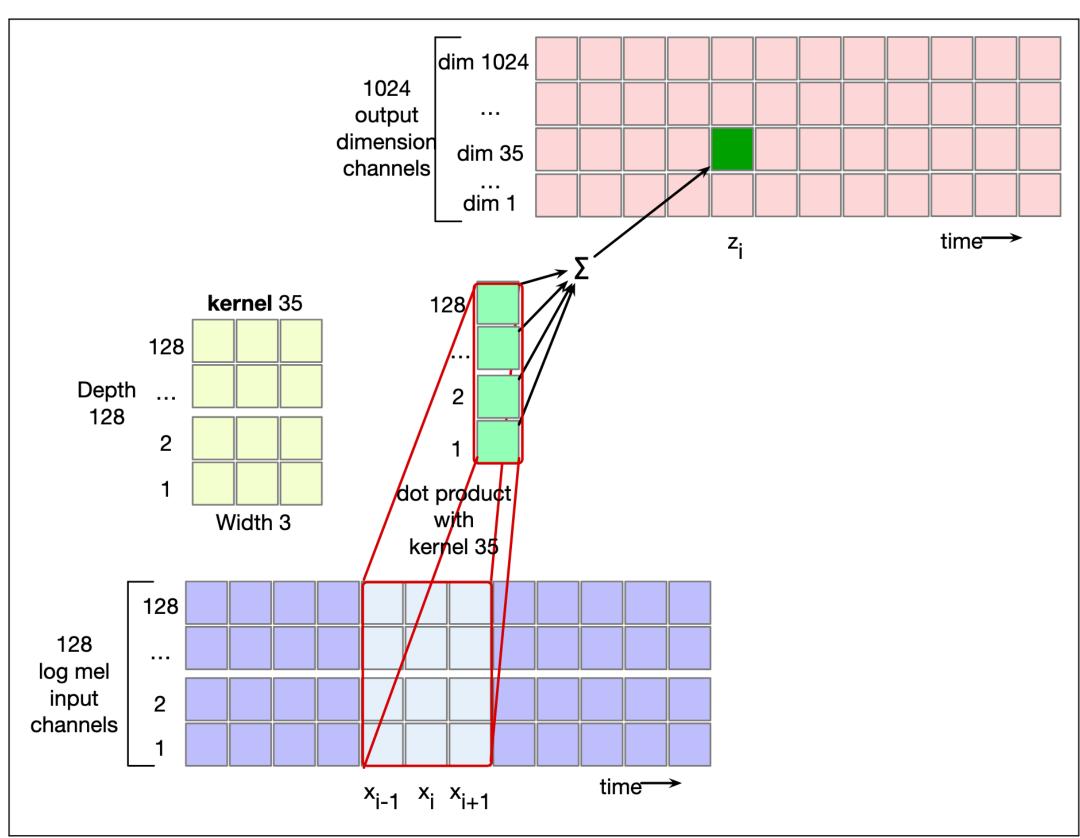


Figure 15.4 A schematic view of a convolutional net with 128 input channels and 1024 output channels. We see how at time point i one of the 1024 kernels ("kernel 35", each of depth 128 and width 3) is dot-product-ed with (each of) the 128 log mel spectrum input vectors, and then summed to produce a single value for one dimension of the output embedding at time i.

CTC

Why we need CTC

- In audio, each input timestep corresponds to e.g. a 25ms window
 - Speech sounds might stretch across multiple time-steps
 - Text transcription doesn't tell us how to align characters to time!
- How do we figure out this alignment?

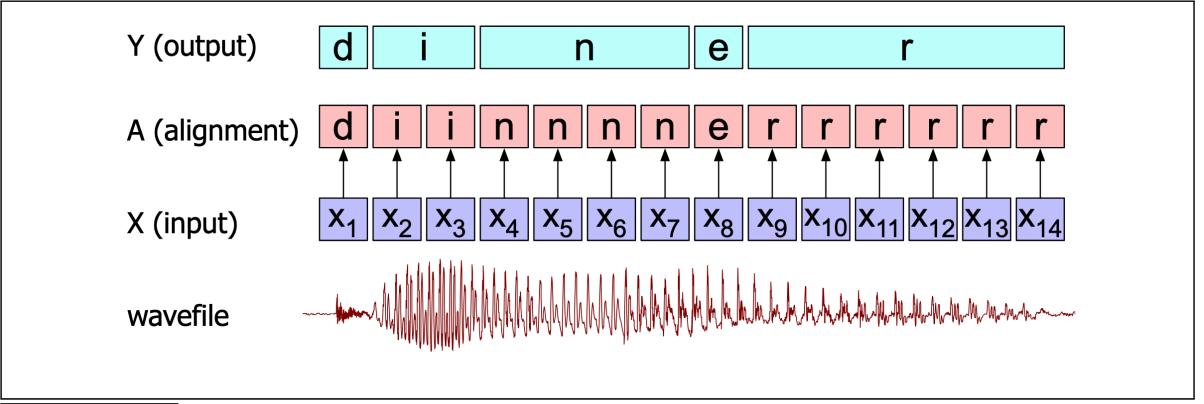


Figure 15.12 A naive algorithm for collapsing an alignment between input and letters.

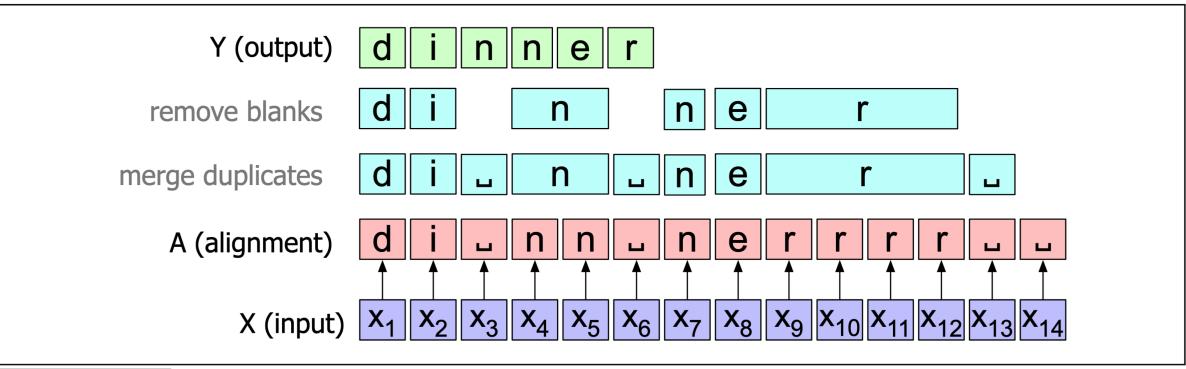


Figure 15.13 The CTC collapsing function B, showing the space blank character \bot ; repeated (consecutive) characters in an alignment A are removed to form the output Y.

CTC

- CTC: Connectionist Temporal
 Classification
 - Essentially, a way to align symbols (characters) to output time-steps
- Uses blank symbol for two purposes:
 - To represent silence
 - To break up duplicate characters
- Otherwise merges duplicates

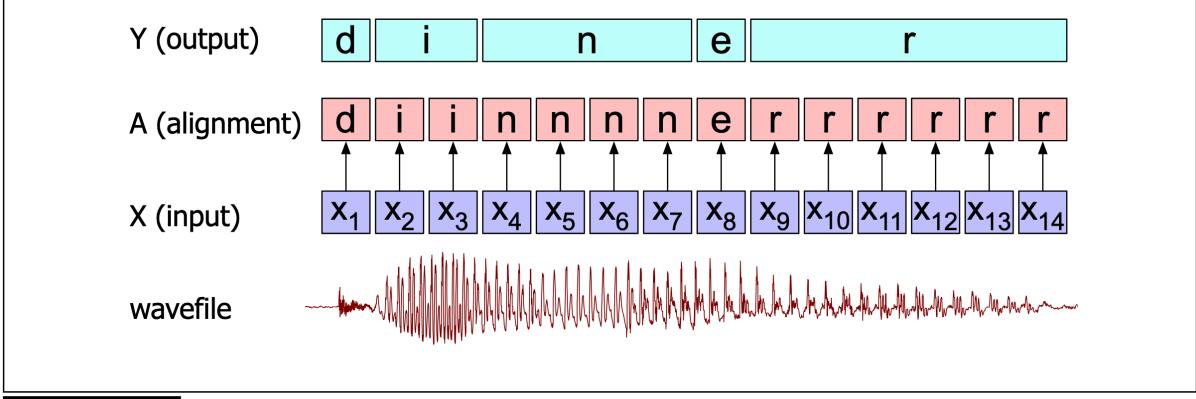


Figure 15.12 A naive algorithm for collapsing an alignment between input and letters.

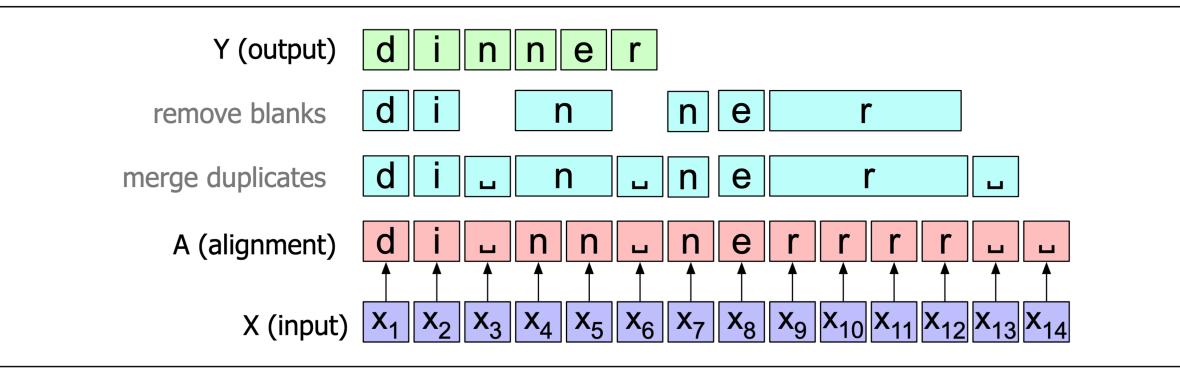


Figure 15.13 The CTC collapsing function B, showing the space blank character \bot ; repeated (consecutive) characters in an alignment A are removed to form the output Y.

CTC

- Model still learns to output one character per timestep, including the special symbols
- Multiple alignments may be compatible with the same output
 - Because of this, calculating loss during training requires an approximation of summing over all alignments

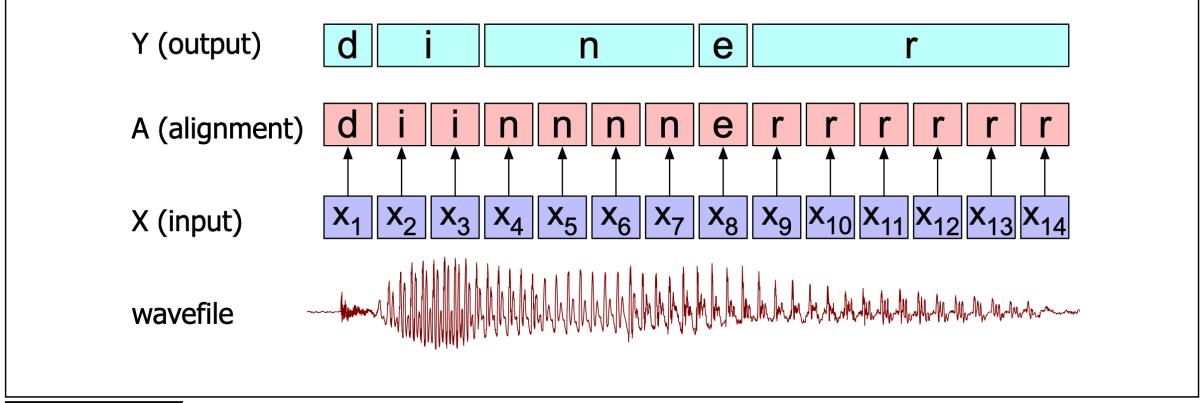


Figure 15.12 A naive algorithm for collapsing an alignment between input and letters.

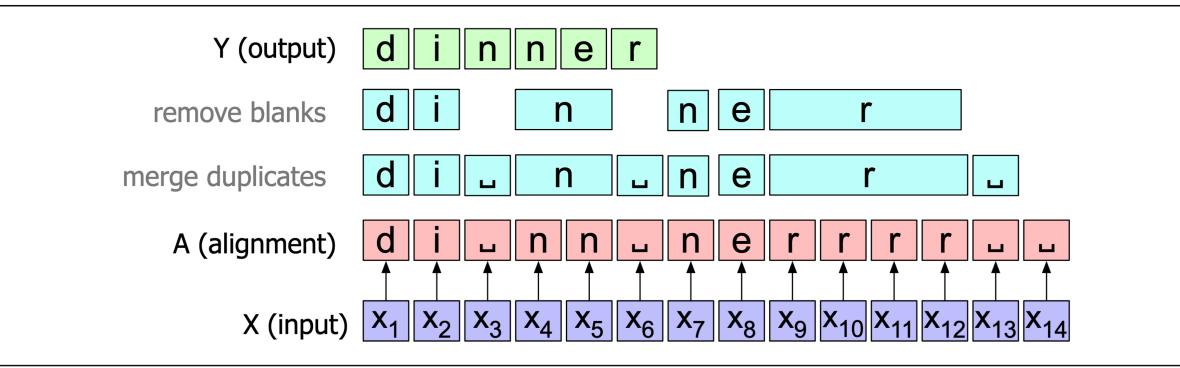


Figure 15.13 The CTC collapsing function B, showing the space blank character \bot ; repeated (consecutive) characters in an alignment A are removed to form the output Y.

LM Integration

- ASR is a difficult task
 - Learns to output what seems **most likely given audio**, but might not be sensible language
- Solution: incorporate an auxiliary language model
 - LM trained just on text
 - Biases system towards probable sequences of words

ASR Model Overview

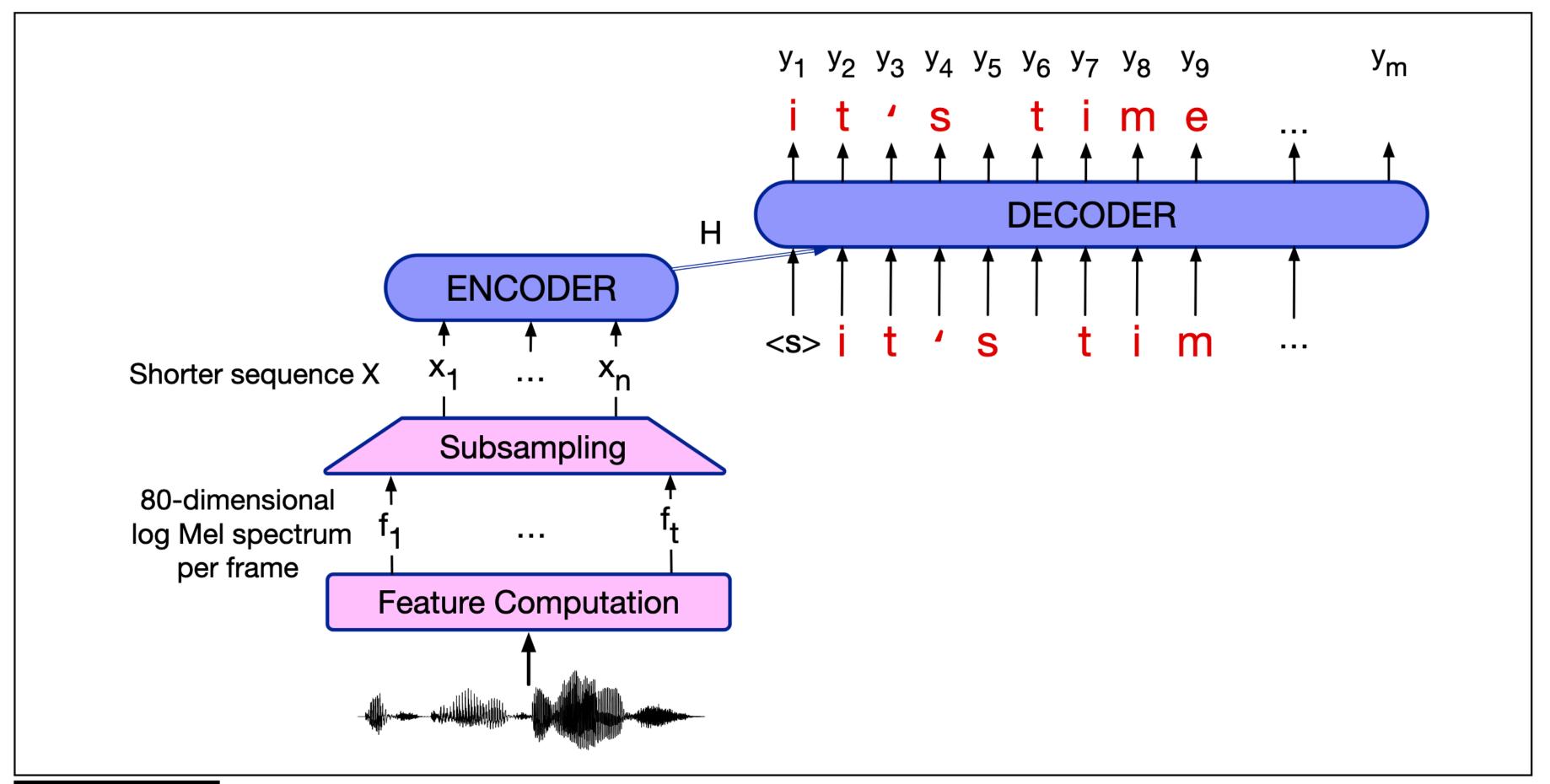
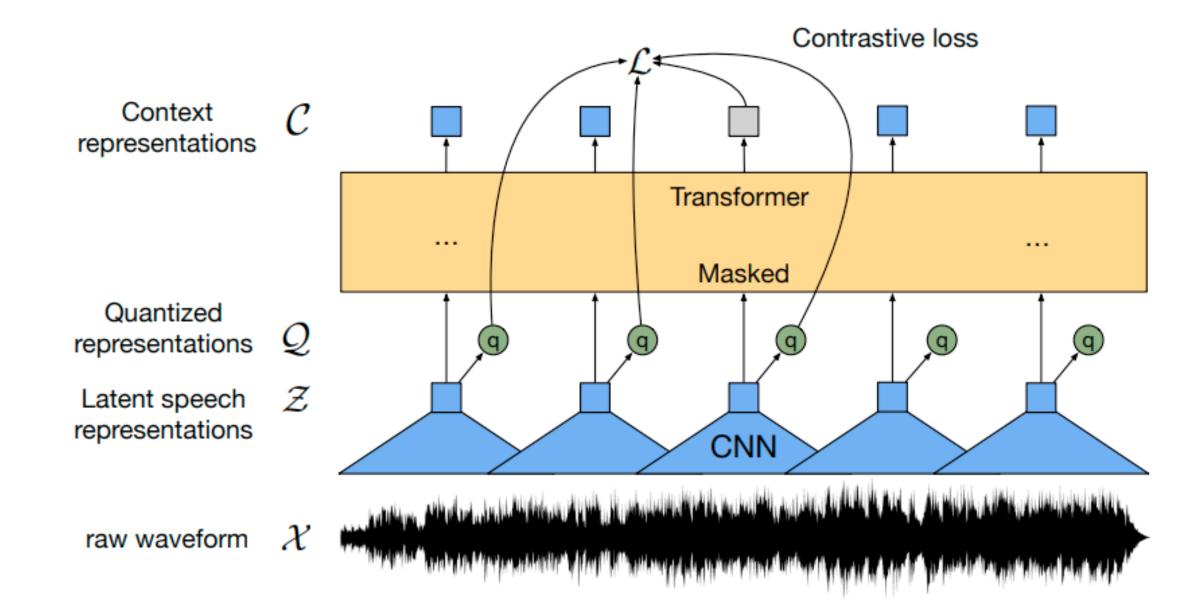


Figure 15.5 Schematic architecture for an encoder-decoder speech recognizer.

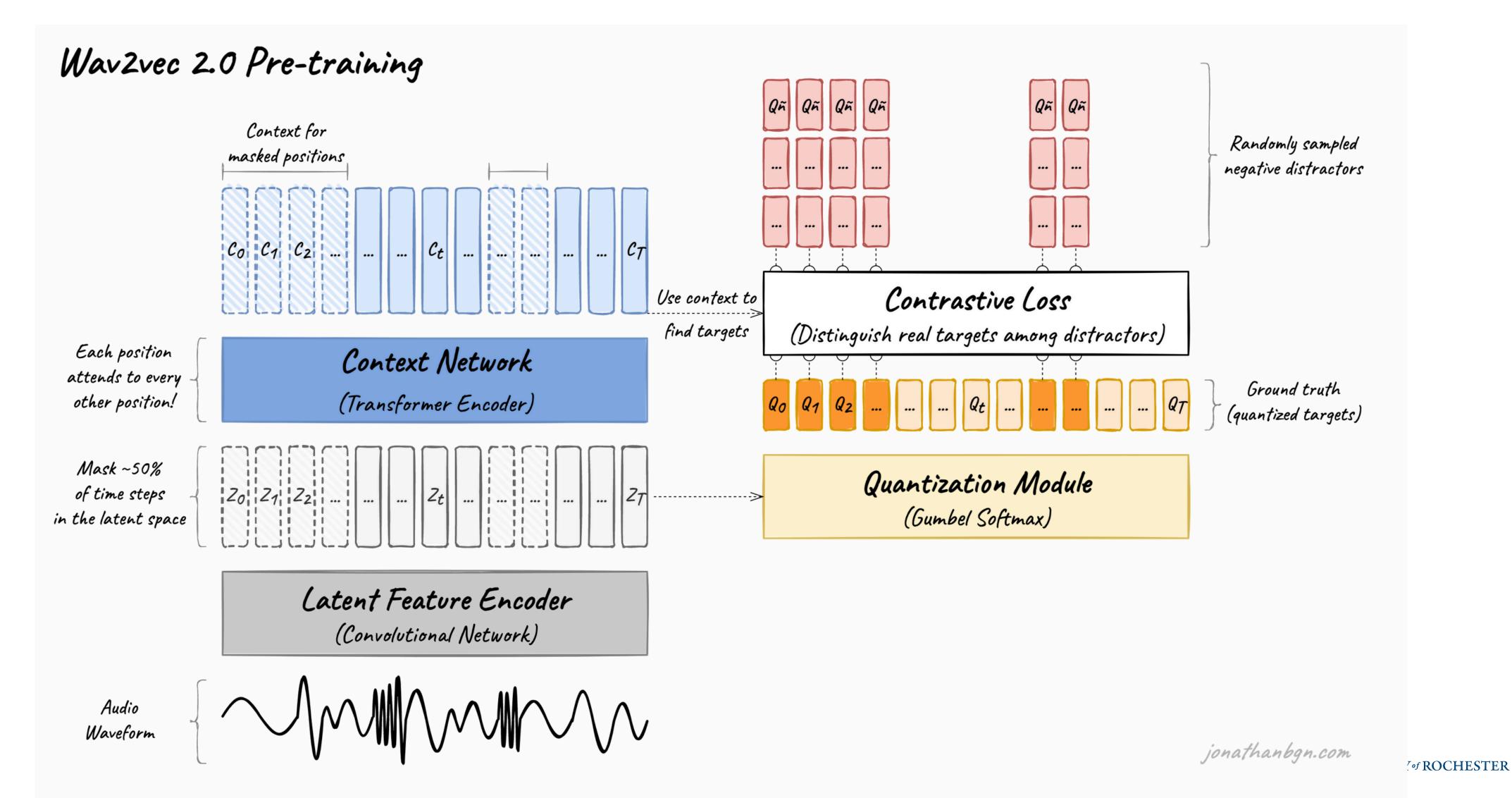
Self-supervised Models

Speech Self-Supervision

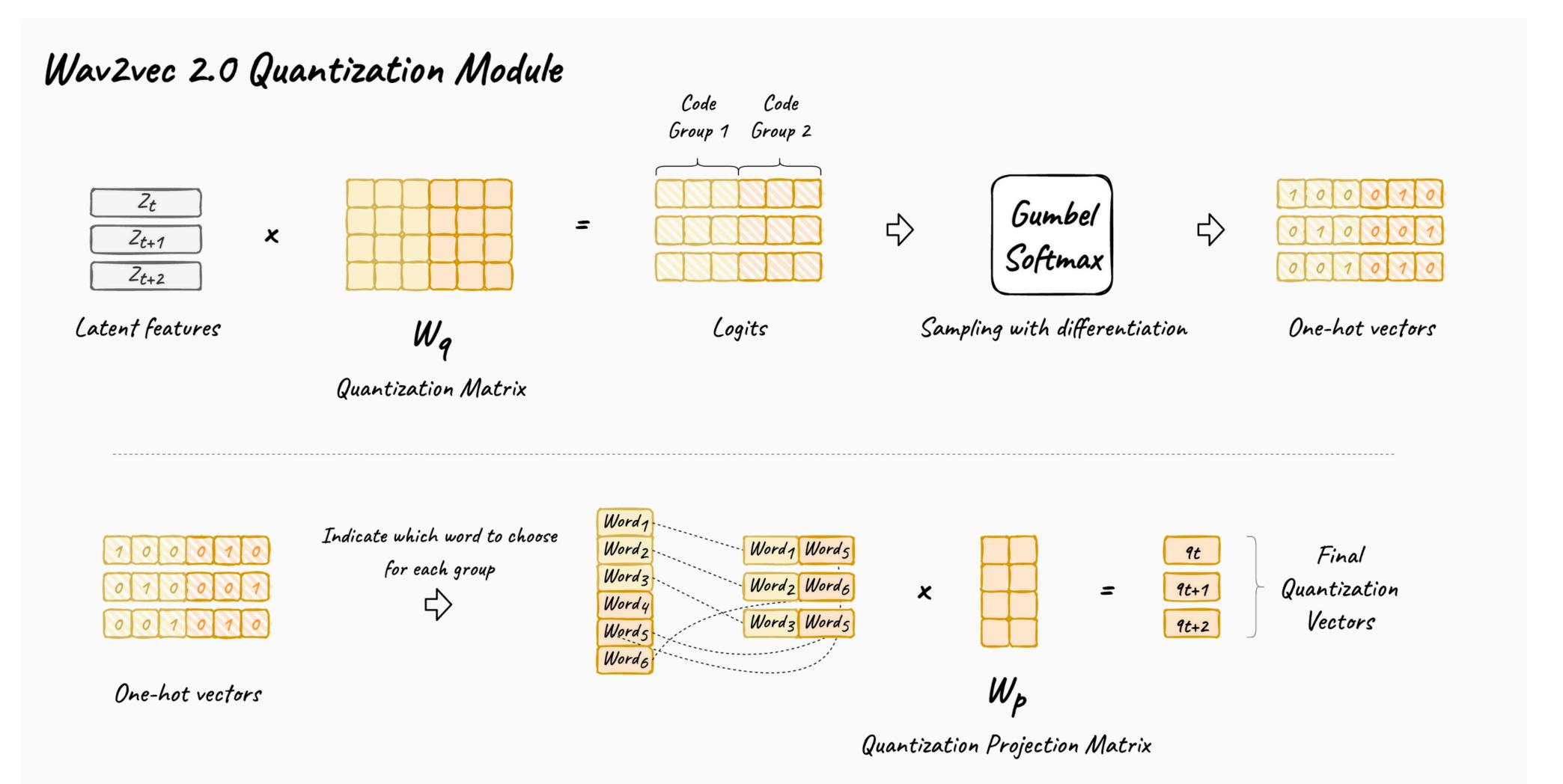
- How can we apply pre-training to speech models?
- Transcribed audio (needed for ASR training) is rare?
- How can we pre-train on audio only?
 - Models like wav2vec have attempted to do just this
- Visualizations on next slides from this helpful blog post



wav2vec Overview



wav2vec Quantization



wav2vec Contrastive Loss

