Transformers 1

Ling 575j: Deep Learning for NLP
C.M. Downey
Spring 2023

Announcements

e Shapes, shapes, shapes:

e In your code, annotate the shape that each Tensor should have (see e.qg.
“forward” in hw3/ref/word2vec.py)

e If you get a shape error, print out the shape of each Tensor

® [hese are the most common issues and biggest pain point in ML land

e HW4: use floating-point numbers for bag-of-words counts, e.g.
e NOT[1, 0, 0, 3], but [1.0, 0.0, 0.0, 3.0]

YA/ UNIVERSITY of WASHINGTON

Today's Plan

e Attention
e Limitations of Recurrent Models

e [ransformers: building blocks

e Self-attention

® Encoder architecture

YA/ UNIVERSITY of WASHINGTON

Limitations of Recurrent Models

RNNs Unrolling

e Recall: RNNs are “unrolled” across time, same operation at each step

e [his has at least two Issues:

e Creates “long path lengths” between sequence positions

e Not parallelizable

YA/ UNIVERSITY of WASHINGTON 5

Long Path Lengths
e Gating mechanisms help RNNs

learn long distance

1 1 1
dependencies, by alleviating g[’“]<°>fD*D*---~D~-..
r 1 r

the vanishing gradient problem

1 1 1
e But: still takes a linear number ”am@;_,Dqu qaq

of computations for one token

r r r
to influence another [11<0> ~O~D~...~D~...
o 1 1

XL

e Long-distance dependencies are (. (e e
still hard! = €

Students who ... enjoy

YA/ UNIVERSITY of WASHINGTON

é

Long Path Lengths
e Gating mechanisms help RNNs

learn long distance / 1 1 T Li“fea"f‘izath 'sngth”

or Interaction
dependencies, by alleviating La[kKO%_’D_'D_'“'_’D_'"' between tokens
the vanishing gradient problem oot ! /

e But: still takes a linear number {a[ZKOQ
of computations for one token
to influence another [m<o> D Df{j
e Long-distance dependencies are
still hard! L D r}

Students who ... enjoy

YA/ UNIVERSITY of WASHINGTON

Lack of Parallelizability

e Modern hardware (e.g. GPUs)

are very good at doing

]]]
Independent computations in > *D-’D*---*Dm
1 r r

parallel

. , o 1 1
e RNNSs are inherently serial: {a[21<0> *D*D_’"'*Dq”
e Cannot compute future time o 1 1
=000
\ / 4 T N\ T N\ 4 T N\

steps without the past

XL

e Bottleneck that makes scaling
up difficult

.CL’<1>

Students who ... enjoy

Lack of Parallelizability

e Modern hardware (e.g. GPUs)

are very good at doing

1 1 1
Independent computations in > ~—»~...~~...
1 r r

parallel

. , ot 1 1
e RNNs are inherently serial: {a[21<0> ~~—»...~~...
e Cannot compute future time o 1 1
i o0
\ / 4 T N T M [T M

steps without the past

Students who ... enjoy

e Bottleneck that makes scaling
up difficult

.CL’<1>

Lack of Parallelizability

e Modern hardware (e.g. GPUs)

are very good at doing

/ t 1
Independent computations In \a[kko%_' "’_’-"_’_’ Number of
! f !

computation
parallel steps required:
| | 1 1 1 / linear in
e RNNs are inherently serial: {a[21<0>\~~—» qq sequence length

e Cannot compute future time ot 1 1
steps without the past {a“koi ~@—»~...~—»."
1 1 1

e Bottleneck that makes scaling (ﬁ"l; gb) (ﬂ;
Up dlffICUIt — (S Y, -~ J

Students who ... enjoy

YA/ UNIVERSITY of WASHINGTON

Transformer Architecture

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones™ Aidan N. Gomez* | F.ukasz Kaiser”
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com Paper link

(but see Annotated and
Abstract lllustrated Transformer)

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.
W UNIVERSITY of WASHINGTON

https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

Key ldea

e Recurrence: not parallelizable, long “path lengths”

e Attention:

e Parallelizable, short path lengths

e [ransformer: “replace” recurrence with attention mechanism

e Subtle issues in making this work, which we we will see

YA/ UNIVERSITY of WASHINGTON 10

encoder

Full Model

\

e

~—>| Add & Norm
Feed
Forward
A

Nx | —{Add & Norm

\,

Multi-Head
Attention

|

At

\.

Output
Probabilities

|

Softmax

(|
Add & Norm <=~

1
Linear
* /
\

|

Feed
Forward

) J

Add & Norm J=~

|

Multi-Head
Attention

1 J N>

S

Add & Norm Je—=

Masked
Multi-Head
Attention

J/

Positional
Encoding

Sa

Input
Embedding

|

T

Inputs

.

A1

v,

o Positional
Encoding

|

Output
Embedding

T

Outputs

(shifted right)

decoder

YA/ UNIVERSITY of WASHINGTON

11

Transformer Block

l Add & Norm

Add & Norm

Multi-Head
Attention

Transformer Block

l Add & Norm

Add & Norm

Multi-Head
Attention

Single layer, applied to each position

What’s this?

Transformer Block

l Add & Norm

Add & Norm

Multi-Head
Attention

Single layer, applied to each position

Scaled Dot-Product Attention

e Recall:
e
e Putting it together: Attention(q, K, V) = Z el
(keys/values in matrices) j Zie |
KT
e Stacking multiple queries: Attention(Q, K, V) = softmax (Q) V
(and scaling) V dy

Scaled Dot-Product Attention

e Recall: - 1
% =4q-K
.= eY% eY
e; = el ze
C = Zjejvj
e
e Putting it together: Attention(q, K, V) = Z el
(keys/values in matrices) j Zie |
KT
e Stacking multiple queries: Attention(Q, K, V) = softmax (Q) V
(and scaling) V di

Scaled Dot-Product Attention

e Recall: — .1
% =4q-K
.- .-
= e%il.e”
e; = el ze
C = Zjejvj
e
e Putting it together: Attention(q, K, V) = Z el
(keys/values in matrices) j 2, em"
KT
e Stacking multiple queries: Attention(Q, K, V) = softmax (0
(and scaling)

Why multiple queries?

NNNNNNNNNNNNNNNNNNNNNN

Why multiple queries?

® seg2seq: single decoder token attends to all encoder states

Why multiple queries?
® seg2seq: single decoder token attends to all encoder states

e [ransformer: self-attention
e Every (token) position attends to every other position (including self!)
e Caveat: in the encoder, and only by default
e Mask in decoder to attend only to previous positions (next time)

e Used for generation (NMT, LM, etc)

YA/ UNIVERSITY of WASHINGTON 14

Why multiple queries?
® seg2seq: single decoder token attends to all encoder states

e [ransformer: self-attention
e Every (token) position attends to every other position (including self!)
e Caveat: in the encoder, and only by default
e Mask in decoder to attend only to previous positions (next time)

e Used for generation (NMT, LM, etc)

e Each vector at each position transformed into a query, key, value

e Linearly transformed, to be different “views”

YA/ UNIVERSITY of WASHINGTON 14

Self-Attention, Details

e Every token attends to every other token
e X [seq_len, embedding_dim]

o XWq: queries

O XWk keyS

O XWVZ values

e Each W is [embedding_dim, embedding_dim] learned matrix

Self-Attention: Detalls
e Q=XW, K=XW,V=XW,

o KT: [embedding_dim, seq_len] Attention(Q, K, V) = S°ftmax(

o OK':[seq_len, seq_len]

e Dot-product of rows of Q with columns of K
O (QKT)U — {;- k]
e Scaled by sg-rt of hidden dimension (see paper for motivation)

e Softmax: along rows, gets the weights

OK"

dy

\F)V

Self-Attention: Detalls

e Softmax output: each row has weights

. OK'
Attention(Q, K, V) = softmax V

e How much g; should pay attention to each v; Vi

e Matrix multiplication with V: output is [seq_len, embedding_dim]

e Each row: weighted average of the V; (rows of V)

e Each row: the weight sum attention value for each query (each input token)

e See here for a more explicit notation, if you like: https://
namedtensor.github.io/

YA/ UNIVERSITY of WASHINGTON 17

https://namedtensor.github.io/
https://namedtensor.github.io/

Multl-headed Attention

e SO far: a single attention mechanism.

e Could be a bottleneck: need to pay attention to different vectors for different
reasons

e Multi-headed: several attention mechanisms in parallel

Multl-headed Attention

e SO far: a single attention mechanism.

e Could be a bottleneck: need to pay attention to different vectors for different
reasons

e Multi-headed: several attention mechanisms in parallel

MultiHead(Q, K, V) = Concat(heady, ..., heady,)W
where head; = Attention(QWiQ, KW, VW)

Multl-headed Attention

e SO far: a single attention mechanism.

e Could be a bottleneck: need to pay attention to different vectors for different

reasons

e Multi-headed: several attention mechanisms in parallel

Scaled Dot-Product l "
4

MultiHead(Q, K, V) = Concat(heads, ..., head,)W Attention

-
I

where head; = Attention(QWiQ, KWE VW)

\

Problem With Self-Attention

e Attention Is order-independent

e If we shuffle Q, K, V, we get the same output!

NNNNNNNNNNNNNNNNNNNNNN

Representing Order

NNNNNNNNNNNNNNNNNNNNNN

Representing Order

e Represented via positional encodings.

Representing Order

e Represented via positional encodings.

08
04

00

320
5
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510

YA/ UNIVERSITY of WASHINGTON 20

http://jalammar.github.io/illustrated-transformer/

Representing Order

e Represented via positional encodings.

e P:[seq_len, embedding_dim]

sSourc

YA/ UNIVERSITY of WASHINGTON

20

08

00

http://jalammar.github.io/illustrated-transformer/

Representing Order

e Represented via positional encodings.

e P:[seq_len, embedding_dim]

e Each row /represents that position in
the sequence

YA/ UNIVERSITY of WASHINGTON 20

http://jalammar.github.io/illustrated-transformer/

Representing Order

e Represented via positional encodings.

e P:[seq_len, embedding_dim]

e Each row /represents that position in
the sequence

e Add to word embeddings at input layer:

sSourc

YA/ UNIVERSITY of WASHINGTON 20

http://jalammar.github.io/illustrated-transformer/

Representing Order

e Represented via positional encodings.

e P:[seq_len, embedding_dim]

e Each row /represents that position in
the sequence

e Add to word embeddings at input layer:

.xl:Ewl_l‘Pl

sSourc

YA/ UNIVERSITY of WASHINGTON 20

http://jalammar.github.io/illustrated-transformer/

Representing Order

e Represented via positional encodings.

e P:[seq_len, embedding_dim]

e Each row /represents that position in
the sequence

e Add to word embeddings at input layer:
O xl — Ewi + Pl

e Can be fixed/pre-defined (see right) or
entirely learned

YA/ UNIVERSITY of WASHINGTON 20

http://jalammar.github.io/illustrated-transformer/

Fixed vs Learned Positional Encoding

e Fixed:
e No need to be learned
e (Guaranteed to be unique to position

e (Generalizes to longer sequence lengths (in theory at least)

e Learned:
e Might learn more useful encodings of position than e.g. sinusoidal
e Can’t extrapolate to longer sequence lengths

e (This has become the default/norm)

e Fancier ways of representing positional info: rotary embeddings, learned bias of distance,
fixed bias of distance (ALIiBI)

YA/ UNIVERSITY of WASHINGTON 21

https://ofir.io/train_short_test_long.pdf

Basic Transformer Encoder Block

Final Ingredients: Residual Connections

e Core idea: add a “skip” connection around
neural building blocks

e Replace f(x) with x + f(x)

e Makes training work much better, by
smoothing out loss surface

e |In Transformer: residual connection around
both self-attention and feed-forward blocks

e Used widely now: FFNNs, CNNs, RNNs,
Transformers, ...

*
‘ weight layer \
l relu

X
‘ welght layer

|dentity

Source

YA/ UNIVERSITY of WASHINGTON

23

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1712.09913.pdf

Final Ingredients: Layer Normalization

e Normalizing inputs: subtract mean, divide by standard deviation
e Makes new mean 0, new standard deviation 1

e Widely used in many kinds of statistical modeling [e.g. predictors in linear
regression], including in NNs

X—HU
O+ €

e Layer norm: to each row x of a matrix (a batch): LN(x) = y+ [
e Where 11 is mean, o is std dev

e 7, [are learned scaling parameters (but often omitted entirely)

https://arxiv.org/abs/1607.06450

Full 'Ilansformgr Encqﬂder Block

NNNNNNNNNNNNNNNNNNNNNN

Initial WMT Results

Training Cost (FLOPs)

BLEU

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [[15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 - 1020
GNMT + RL [31] 24.6 39.92 2.3-10Y 1.4-102%°
ConvS2S [8]] 25.16 40.46 9.6-101% 1.5-10%
MoE [26]] 26.03 40.56 2.0-10° 1.2.10%°
Deep-Att + PosUnk Ensemble [32]] 40.4 8.0 - 102V
GNMT + RL Ensemble [31] 2630 41.16 1.8-10%° 1.1.10%
ConvS2S Ensemble [§]] 26.36 41.29 7.7-1019 1.2-10%!
Transformer (base model) 27.3 38.1 3.3-10'%
Transformer (big) 28.4 41.0 2.3 - 1019

YA/ UNIVERSITY of WASHINGTON

26

Initial WMT Results

Training Cost (FLOPs)

BLEU

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet 23.75
Deep-Att + PosUnk 39.2 . 10%Y
GNMT + RL [31]] 24.6 39.92 . 10%°
ConvS2S 25.16 40.46 . 1040
MOoE [26]] 26.03 40.56 . 1029
Deep-Att + PosUnk Ensemble [32]] 40.4
GNMT + RL Ensemble [31]] 26.30 41.16
ConvS2S Ensemble [8] 26.36 41.29
Transformer (base model) 27.3 38.1
Transformer (big) 28.4 41.0

YA/ UNIVERSITY of WASHINGTON

26

Coreference?

Attention Visualization

apIM
001

SEeM

asneoaqy
EENE
aul
SS010
LupIp
|IBWILE

3y

paJl
001

SEM

asnNessaq

EENE
Iyl
$S040
Lupip
|ewiue

ayl

apIM
00)
SEM

1
asnenaq

2y)
SS0.0
LupIp
|Bwiue

ay |

paJl]

00)

SEM

}!
asneoaq
19811
sy}
SS0.D

JUpIp

ayl

source

27

YA/ UNIVERSITY of WASHINGTON

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer: Path Lengths + Parallelism

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

<

\

-
—

N

|

=
-4

G

—engiiflig—

E

1

E,

SSSSSS

E

N

(BERT paper)

Path lengths between
tokens: 1
(constant, not linear)

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

| SR A T
Computation order:

Entire second layer: 1 o o o Path lengths between

~ -d
M‘-—-—,‘«-—(tokens: 1

I@’o (constant, not linear)

Entire first layer: O o

Also not linear In »)" \<
sequence length! Can E, E, E,

be parallelized.

source (BERT paper) W UNIVERSITY 6 f WASHINGTON 28

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Summary

e Entirely feed-forward
e [herefore massively parallelizable

e RNNs are inherently sequential, a parallelization bottleneck
e (Self-)attention everywhere

e Long-term dependencies:

e LSTM: has to maintain representation of early item

e [ransformer: very short “path-lengths”

YA/ UNIVERSITY of WASHINGTON 29

Next Time

e A deeper look at the decoder block of a Transformer

e Attention masks

e Subword tokenization

WA/ UNIVERSITY of WASHINGTON 30

