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Announcements
● Shapes, shapes, shapes: 

● In your code, annotate the shape that each Tensor should have (see e.g. 
`forward` in hw3/ref/word2vec.py)

● If you get a shape error, print out the shape of each Tensor

● These are the most common issues and biggest pain point in ML land

● HW4: use floating-point numbers for bag-of-words counts, e.g.

● NOT [1, 0, 0, 3], but [1.0, 0.0, 0.0, 3.0]
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Today’s Plan
● Attention

● Limitations of Recurrent Models

● Transformers: building blocks

● Self-attention

● Encoder architecture
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Limitations of Recurrent Models

4



RNNs Unrolling
● Recall: RNNs are “unrolled” across time, same operation at each step

● This has at least two issues:

● Creates “long path lengths” between sequence positions

● Not parallelizable
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Long Path Lengths
● Gating mechanisms help RNNs 

learn long distance 
dependencies, by alleviating 
the vanishing gradient problem

● But: still takes a linear number 
of computations for one token 
to influence another

● Long-distance dependencies are 
still hard!
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Linear “path length” 
for interaction 

between tokens



Lack of Parallelizability
● Modern hardware (e.g. GPUs) 

are very good at doing 
independent computations in 
parallel

● RNNs are inherently serial:

● Cannot compute future time 
steps without the past

● Bottleneck that makes scaling 
up difficult
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Transformer Architecture
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Paper link 
 

(but see Annotated and  
Illustrated Transformer)

https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/


Key Idea
● Recurrence: not parallelizable, long “path lengths”

● Attention:

● Parallelizable, short path lengths

● Transformer: “replace” recurrence with attention mechanism

● Subtle issues in making this work, which we we will see
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Full Model
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Transformer Block
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Transformer Block

12

Single layer, applied to each position



Transformer Block
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What’s this?

Single layer, applied to each position



Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)
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Attention(Q, K, V) = softmax ( QKT

dk ) V
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Why multiple queries?
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Why multiple queries?
● seq2seq: single decoder token attends to all encoder states
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Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention

● Every (token) position attends to every other position (including self!)

● Caveat: in the encoder, and only by default

● Mask in decoder to attend only to previous positions (next time)

● Used for generation (NMT, LM, etc)
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Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention

● Every (token) position attends to every other position (including self!)

● Caveat: in the encoder, and only by default

● Mask in decoder to attend only to previous positions (next time)

● Used for generation (NMT, LM, etc)

● Each vector at each position transformed into a query, key, value

● Linearly transformed, to be different “views” 
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Self-Attention, Details
● Every token attends to every other token

● X: [seq_len, embedding_dim]

● : queries

● : keys

● : values

● Each W is [embedding_dim, embedding_dim] learned matrix

XWq

XWk

XWv
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Self-Attention: Details
● Q = , K = , V = 

● : [embedding_dim, seq_len]

● : [seq_len, seq_len]

● Dot-product of rows of Q with columns of K

●

● Scaled by sq-rt of hidden dimension (see paper for motivation)

● Softmax: along rows, gets the weights 

XWq XWk XWv

KT

QKT

(QKT)ij = qi ⋅ kj
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Self-Attention: Details
● Softmax output: each row has weights

● How much  should pay attention to each 

● Matrix multiplication with : output is [seq_len, embedding_dim]

● Each row: weighted average of the  (rows of V)

● Each row: the weight sum attention value for each query (each input token)

● See here for a more explicit notation, if you like: https://
namedtensor.github.io/

qi vj

V
vj
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Attention(Q, K, V) = softmax ( QKT

dk ) V

https://namedtensor.github.io/
https://namedtensor.github.io/


Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay attention to different vectors for different 
reasons

● Multi-headed: several attention mechanisms in parallel
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Problem With Self-Attention
● Attention is order-independent

● If we shuffle Q, K, V, we get the same output!
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Representing Order
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● Represented via positional encodings.
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Representing Order
● Represented via positional encodings.

● P: [seq_len, embedding_dim]

● Each row i represents that position in 
the sequence

● Add to word embeddings at input layer:

● xi = Ewi
+ Pi

● Can be fixed/pre-defined (see right) or 
entirely learned
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sourc

http://jalammar.github.io/illustrated-transformer/


Fixed vs Learned Positional Encoding
● Fixed:

● No need to be learned

● Guaranteed to be unique to position

● Generalizes to longer sequence lengths (in theory at least)

● Learned:

● Might learn more useful encodings of position than e.g. sinusoidal

● Can’t extrapolate to longer sequence lengths

● (This has become the default/norm)

● Fancier ways of representing positional info: rotary embeddings, learned bias of distance, 
fixed bias of distance (ALiBi)
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https://ofir.io/train_short_test_long.pdf


Basic Transformer Encoder Block
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Final Ingredients: Residual Connections
● Core idea: add a “skip” connection around 

neural building blocks

● Replace  with 

● Makes training work much better, by 
smoothing out loss surface

● In Transformer: residual connection around 
both self-attention and feed-forward blocks

● Used widely now: FFNNs, CNNs, RNNs, 
Transformers, …

f(x) x + f(x)
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source

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1712.09913.pdf


Final Ingredients: Layer Normalization
● Normalizing inputs: subtract mean, divide by standard deviation

● Makes new mean 0, new standard deviation 1

● Widely used in many kinds of statistical modeling [e.g. predictors in linear 
regression], including in NNs

● Layer norm: to each row  of a matrix (a batch):

● Where  is mean,  is std dev

●  are learned scaling parameters (but often omitted entirely)

x
μ σ

γ, β
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LN(x) =
x − μ
σ + ϵ

γ + β

https://arxiv.org/abs/1607.06450


Full Transformer Encoder Block
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Initial WMT Results
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Initial WMT Results
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More on why 
important later



Attention Visualization: Coreference?
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source

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Transformer: Path Lengths + Parallelism

28source (BERT paper)

https://www.aclweb.org/anthology/N19-1423.pdf
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Transformer: Path Lengths + Parallelism

28source (BERT paper)

Path lengths between 
tokens: 1

(constant, not linear)

Computation order:

Entire second layer: 1

Entire first layer: 0

Also not linear in 
sequence length! Can 

be parallelized.

https://www.aclweb.org/anthology/N19-1423.pdf


Transformer: Summary
● Entirely feed-forward

● Therefore massively parallelizable

● RNNs are inherently sequential, a parallelization bottleneck

● (Self-)attention everywhere

● Long-term dependencies:

● LSTM: has to maintain representation of early item

● Transformer: very short “path-lengths”
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Next Time
● A deeper look at the decoder block of a Transformer

● Attention masks

● Subword tokenization
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