
Transformers 1
Ling 575j: Deep Learning for NLP

C.M. Downey
Spring 2023

1

Announcements
● Shapes, shapes, shapes:

● In your code, annotate the shape that each Tensor should have (see e.g.
`forward` in hw3/ref/word2vec.py)

● If you get a shape error, print out the shape of each Tensor

● These are the most common issues and biggest pain point in ML land

● HW4: use floating-point numbers for bag-of-words counts, e.g.

● NOT [1, 0, 0, 3], but [1.0, 0.0, 0.0, 3.0]

2

Today’s Plan
● Attention

● Limitations of Recurrent Models

● Transformers: building blocks

● Self-attention

● Encoder architecture

3

Limitations of Recurrent Models

4

RNNs Unrolling
● Recall: RNNs are “unrolled” across time, same operation at each step

● This has at least two issues:

● Creates “long path lengths” between sequence positions

● Not parallelizable

5

Long Path Lengths
● Gating mechanisms help RNNs

learn long distance
dependencies, by alleviating
the vanishing gradient problem

● But: still takes a linear number
of computations for one token
to influence another

● Long-distance dependencies are
still hard!

6

Students who … enjoy

Long Path Lengths
● Gating mechanisms help RNNs

learn long distance
dependencies, by alleviating
the vanishing gradient problem

● But: still takes a linear number
of computations for one token
to influence another

● Long-distance dependencies are
still hard!

6

Students who … enjoy

Linear “path length”
for interaction

between tokens

Lack of Parallelizability
● Modern hardware (e.g. GPUs)

are very good at doing
independent computations in
parallel

● RNNs are inherently serial:

● Cannot compute future time
steps without the past

● Bottleneck that makes scaling
up difficult

7

Students who … enjoy

Lack of Parallelizability
● Modern hardware (e.g. GPUs)

are very good at doing
independent computations in
parallel

● RNNs are inherently serial:

● Cannot compute future time
steps without the past

● Bottleneck that makes scaling
up difficult

7

Students who … enjoy

0

1

1

2

t

k

t+1

k+1 t+k

Lack of Parallelizability
● Modern hardware (e.g. GPUs)

are very good at doing
independent computations in
parallel

● RNNs are inherently serial:

● Cannot compute future time
steps without the past

● Bottleneck that makes scaling
up difficult

7

Students who … enjoy

0

1

1

2

t

k

t+1

k+1 t+k Number of
computation

steps required:
linear in

sequence length

Transformer Architecture

8

9

Paper link

(but see Annotated and
Illustrated Transformer)

https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

Key Idea
● Recurrence: not parallelizable, long “path lengths”

● Attention:

● Parallelizable, short path lengths

● Transformer: “replace” recurrence with attention mechanism

● Subtle issues in making this work, which we we will see

10

Full Model

11

encoder

decoder

Transformer Block

12

Transformer Block

12

Single layer, applied to each position

Transformer Block

12

What’s this?

Single layer, applied to each position

Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)

13

Attention(q, K, V) = ∑
j

eq⋅kj

∑i eq⋅ki
vj

Attention(Q, K, V) = softmax (QKT

dk) V

Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)

13

αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

Attention(q, K, V) = ∑
j

eq⋅kj

∑i eq⋅ki
vj

Attention(Q, K, V) = softmax (QKT

dk) V

Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)

13

αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

Attention(q, K, V) = ∑
j

eq⋅kj

∑i eq⋅ki
vj

Attention(Q, K, V) = softmax (QKT

dk) V

Why multiple queries?

14

Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

14

Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention

● Every (token) position attends to every other position (including self!)

● Caveat: in the encoder, and only by default

● Mask in decoder to attend only to previous positions (next time)

● Used for generation (NMT, LM, etc)

14

Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention

● Every (token) position attends to every other position (including self!)

● Caveat: in the encoder, and only by default

● Mask in decoder to attend only to previous positions (next time)

● Used for generation (NMT, LM, etc)

● Each vector at each position transformed into a query, key, value

● Linearly transformed, to be different “views”

14

Self-Attention, Details
● Every token attends to every other token

● X: [seq_len, embedding_dim]

● : queries

● : keys

● : values

● Each W is [embedding_dim, embedding_dim] learned matrix

XWq

XWk

XWv

15

Self-Attention: Details
● Q = , K = , V =

● : [embedding_dim, seq_len]

● : [seq_len, seq_len]

● Dot-product of rows of Q with columns of K

●

● Scaled by sq-rt of hidden dimension (see paper for motivation)

● Softmax: along rows, gets the weights

XWq XWk XWv

KT

QKT

(QKT)ij = qi ⋅ kj

16

Attention(Q, K, V) = softmax (QKT

dk) V

Self-Attention: Details
● Softmax output: each row has weights

● How much should pay attention to each

● Matrix multiplication with : output is [seq_len, embedding_dim]

● Each row: weighted average of the (rows of V)

● Each row: the weight sum attention value for each query (each input token)

● See here for a more explicit notation, if you like: https://
namedtensor.github.io/

qi vj

V
vj

17

Attention(Q, K, V) = softmax (QKT

dk) V

https://namedtensor.github.io/
https://namedtensor.github.io/

Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay attention to different vectors for different
reasons

● Multi-headed: several attention mechanisms in parallel

18

Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay attention to different vectors for different
reasons

● Multi-headed: several attention mechanisms in parallel

18

Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay attention to different vectors for different
reasons

● Multi-headed: several attention mechanisms in parallel

18

Problem With Self-Attention
● Attention is order-independent

● If we shuffle Q, K, V, we get the same output!

19

Representing Order

20

Representing Order
● Represented via positional encodings.

20

Representing Order
● Represented via positional encodings.

20

sourc

http://jalammar.github.io/illustrated-transformer/

Representing Order
● Represented via positional encodings.

● P: [seq_len, embedding_dim]

20

sourc

http://jalammar.github.io/illustrated-transformer/

Representing Order
● Represented via positional encodings.

● P: [seq_len, embedding_dim]

● Each row i represents that position in
the sequence

20

sourc

http://jalammar.github.io/illustrated-transformer/

Representing Order
● Represented via positional encodings.

● P: [seq_len, embedding_dim]

● Each row i represents that position in
the sequence

● Add to word embeddings at input layer:

20

sourc

http://jalammar.github.io/illustrated-transformer/

Representing Order
● Represented via positional encodings.

● P: [seq_len, embedding_dim]

● Each row i represents that position in
the sequence

● Add to word embeddings at input layer:

● xi = Ewi
+ Pi

20

sourc

http://jalammar.github.io/illustrated-transformer/

Representing Order
● Represented via positional encodings.

● P: [seq_len, embedding_dim]

● Each row i represents that position in
the sequence

● Add to word embeddings at input layer:

● xi = Ewi
+ Pi

● Can be fixed/pre-defined (see right) or
entirely learned

20

sourc

http://jalammar.github.io/illustrated-transformer/

Fixed vs Learned Positional Encoding
● Fixed:

● No need to be learned

● Guaranteed to be unique to position

● Generalizes to longer sequence lengths (in theory at least)

● Learned:

● Might learn more useful encodings of position than e.g. sinusoidal

● Can’t extrapolate to longer sequence lengths

● (This has become the default/norm)

● Fancier ways of representing positional info: rotary embeddings, learned bias of distance,
fixed bias of distance (ALiBi)

21

https://ofir.io/train_short_test_long.pdf

Basic Transformer Encoder Block

22

Final Ingredients: Residual Connections
● Core idea: add a “skip” connection around

neural building blocks

● Replace with

● Makes training work much better, by
smoothing out loss surface

● In Transformer: residual connection around
both self-attention and feed-forward blocks

● Used widely now: FFNNs, CNNs, RNNs,
Transformers, …

f(x) x + f(x)

23

source

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1712.09913.pdf

Final Ingredients: Layer Normalization
● Normalizing inputs: subtract mean, divide by standard deviation

● Makes new mean 0, new standard deviation 1

● Widely used in many kinds of statistical modeling [e.g. predictors in linear
regression], including in NNs

● Layer norm: to each row of a matrix (a batch):

● Where is mean, is std dev

● are learned scaling parameters (but often omitted entirely)

x
μ σ

γ, β

24

LN(x) =
x − μ
σ + ϵ

γ + β

https://arxiv.org/abs/1607.06450

Full Transformer Encoder Block

25

Initial WMT Results

26

Initial WMT Results

26

More on why
important later

Attention Visualization: Coreference?

27

source

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer: Path Lengths + Parallelism

28source (BERT paper)

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

28source (BERT paper)

Path lengths between
tokens: 1

(constant, not linear)

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

28source (BERT paper)

Path lengths between
tokens: 1

(constant, not linear)

Computation order:

Entire second layer: 1

Entire first layer: 0

Also not linear in
sequence length! Can

be parallelized.

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Summary
● Entirely feed-forward

● Therefore massively parallelizable

● RNNs are inherently sequential, a parallelization bottleneck

● (Self-)attention everywhere

● Long-term dependencies:

● LSTM: has to maintain representation of early item

● Transformer: very short “path-lengths”

29

Next Time
● A deeper look at the decoder block of a Transformer

● Attention masks

● Subword tokenization

30

