Transformers 2: Decoder, Limitations

Ling 575j: Deep Learning for NLP C.M. Downey Spring 2023

Announcements

- HW4 ref (/ sym-links) available
- Why a character-level language model for HW5?
 - Primarily: compute efficiency. For SST data:
 - Size of char vocab: ~70. Size of word vocab: ~13000.
 - Softmax layer sums over the whole vocab (for denominator); becomes very expensive!
 - NB: will talk today about "modern" approaches to solving this problem
 - Secondarily: very impressive! Still can work quite well (e.g. char LSTM LMs from those slides).
 - Third: may learn interesting phenomena below the word level (e.g. morpheme discovery).
 - NB: hard problem so models may not work as well as word-level, esp. small ones (e.g. HW5).
- See Ajda Gokcen's Treehouse talk from last year on text granularity in NLP models

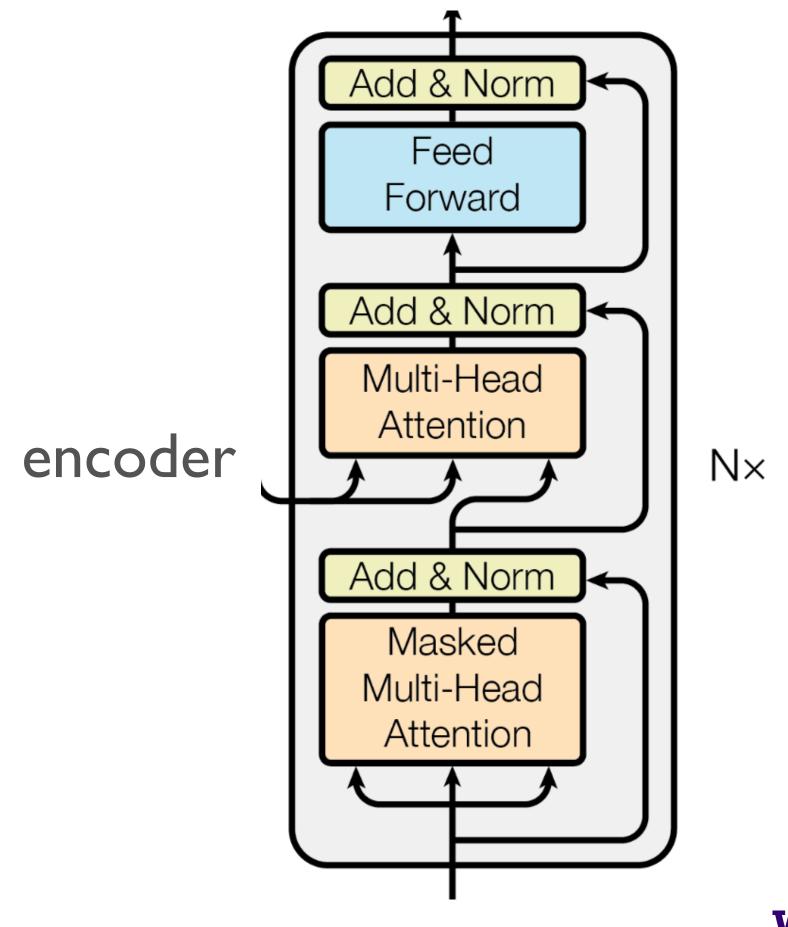
Today's Plan

- Wrap up Transformer Encoder
- Transformer Decoder
 - Attention Masks
- Limitations
 - Quadratic attention
 - Sequential generation
- Subword Tokenization

Transformer Decoder

Decoder Block

- Like the encoder, the decoder is many blocks stacked vertically
- Two slightly different ingredients:
 - Masked self-attention
 - Cross (encoder-decoder) attention



Masked Self-Attention

Masked Self-Attention

- Recall from seq2seq:
 - Decoder a kind of conditional language model
 - Predicts next tokens in output sequence, given the encoder representations
 - (Can also be used on its own as an unconditional LM; more later)
- Problem: self-attention "looks to the future"
 - Decoders should only be able to pay attention to previous positions

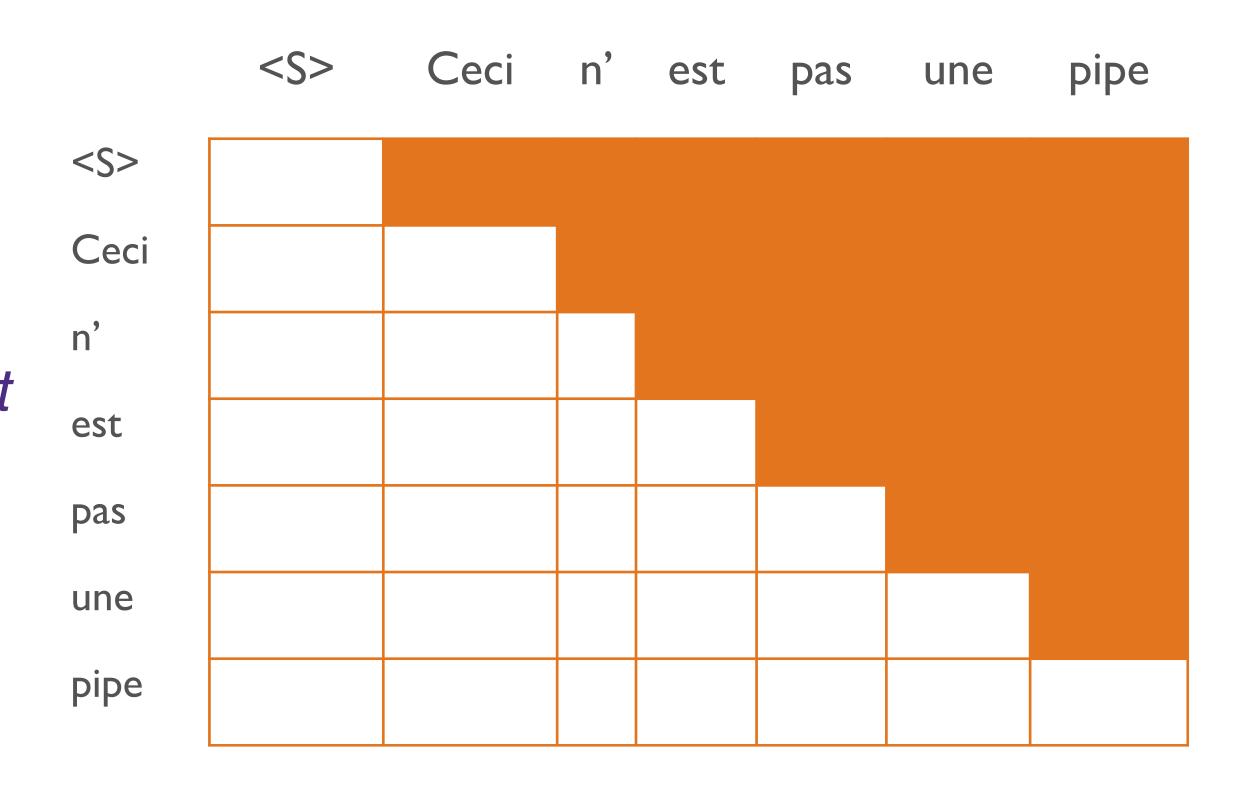
Masking Out the Future

Key idea:

 Use a "mask" to block out certain attention scores

On the left:

 Tokens in the rows (as queries) can not pay attention to the tokens in the columns (values) that are shaded in



Masking Out the Future

 QK^T : total attention scores

$$\mathsf{mask}_{ij} = \begin{cases} -\infty & j > i \\ 0 & \mathsf{otherwise} \end{cases}$$

$$\mathsf{MaskedAttention}(Q, K, V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + \mathsf{mask}\right)V$$



Masked Self-Attention

- In a nutshell:
 - Compute "raw" attention scores as before
 - Add a mask to "zero out" the future positions in a sequence
- As in the encoder:
 - This is one attention *head*, several used for multi-headed attention
 - Q, K, V are generated by applying learned matrices for each head

Cross-Attention

Cross-Attention

- Recall the original application of attention: allowing a decoder to attend to all of an encoder's representations, instead of just the final one
- How can we apply this form in Transformer-land?
 - What are the queries, keys, and values?

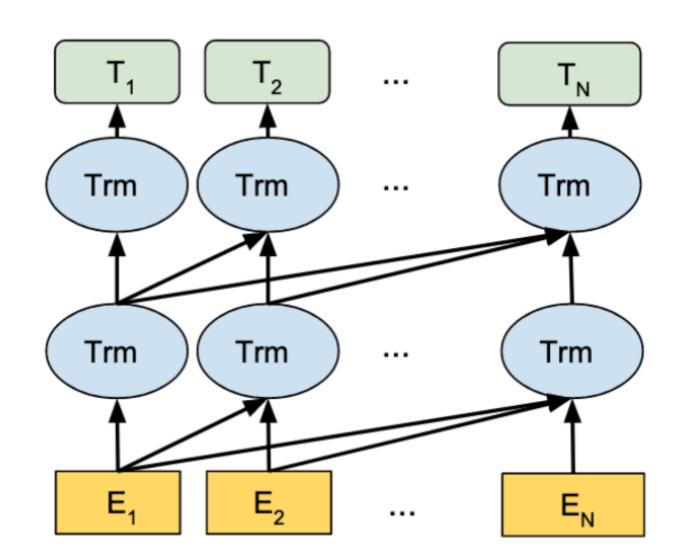
Cross-Attention

- Queries: decoder representations X
- Keys and values: top-layer encoder representations Z
- Learned weight matrices $W_q,\,W_k,\,W_v$ as before

CrossAttention = Attention
$$\left(XW_q, ZW_k, ZW_v\right)$$

Transformer Decoders

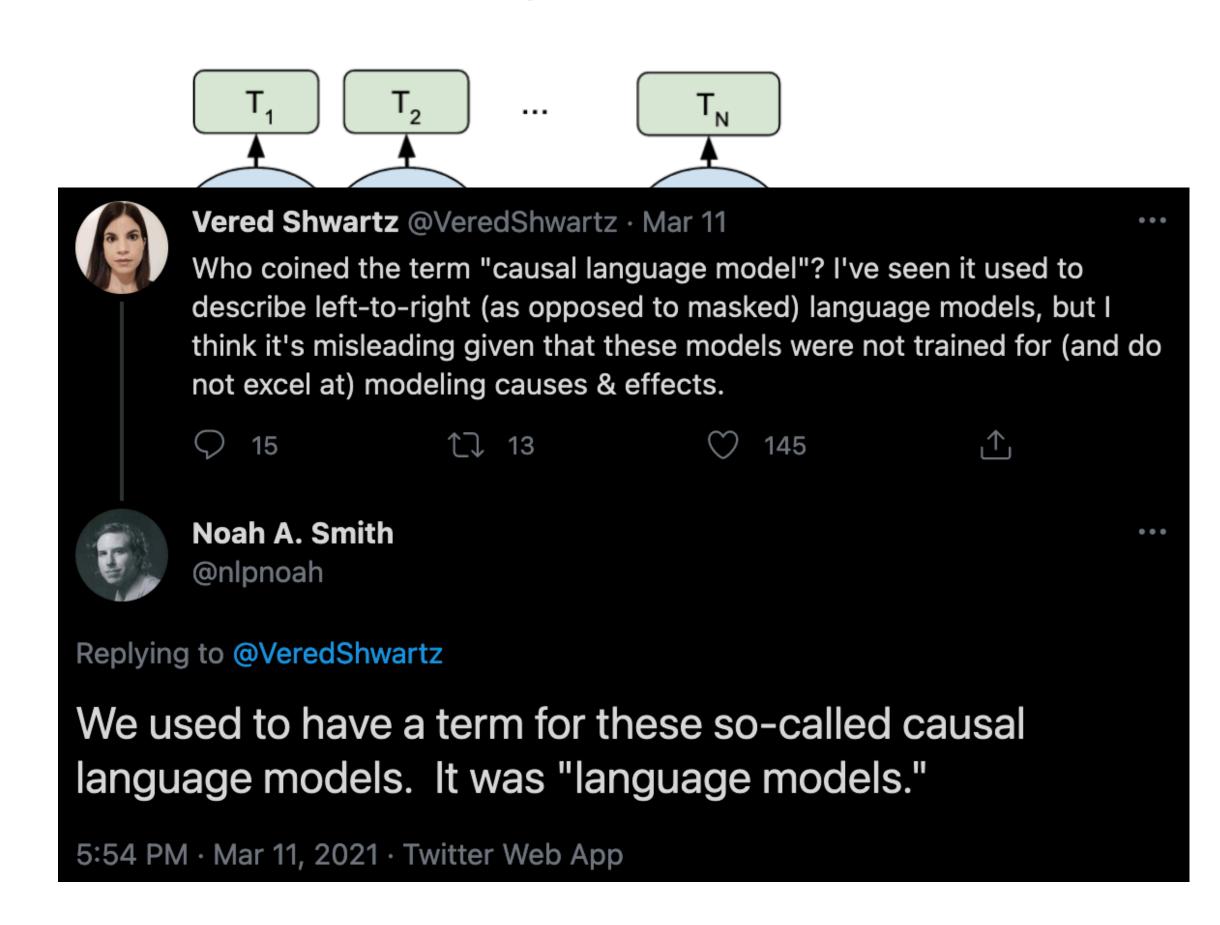
- Can be used any place you would use a decoder
- Masked attention prevents "peeking into the future"
- In seq2seq, for conditional language modeling,
 e.g.
 - Translation
 - Summarization
- On its own, as a "pure" language model
 - (people now call this "causal language modeling" sometimes)



source

Transformer Decoders

- Can be used any place you would use a decoder
- Masked attention prevents "peeking into the future"
- In seq2seq, for conditional language modeling,
 e.g.
 - Translation
 - Summarization
- On its own, as a "pure" language model
 - (people now call this "causal language modeling" sometimes)



Transformer LM (Decoder-only) Results

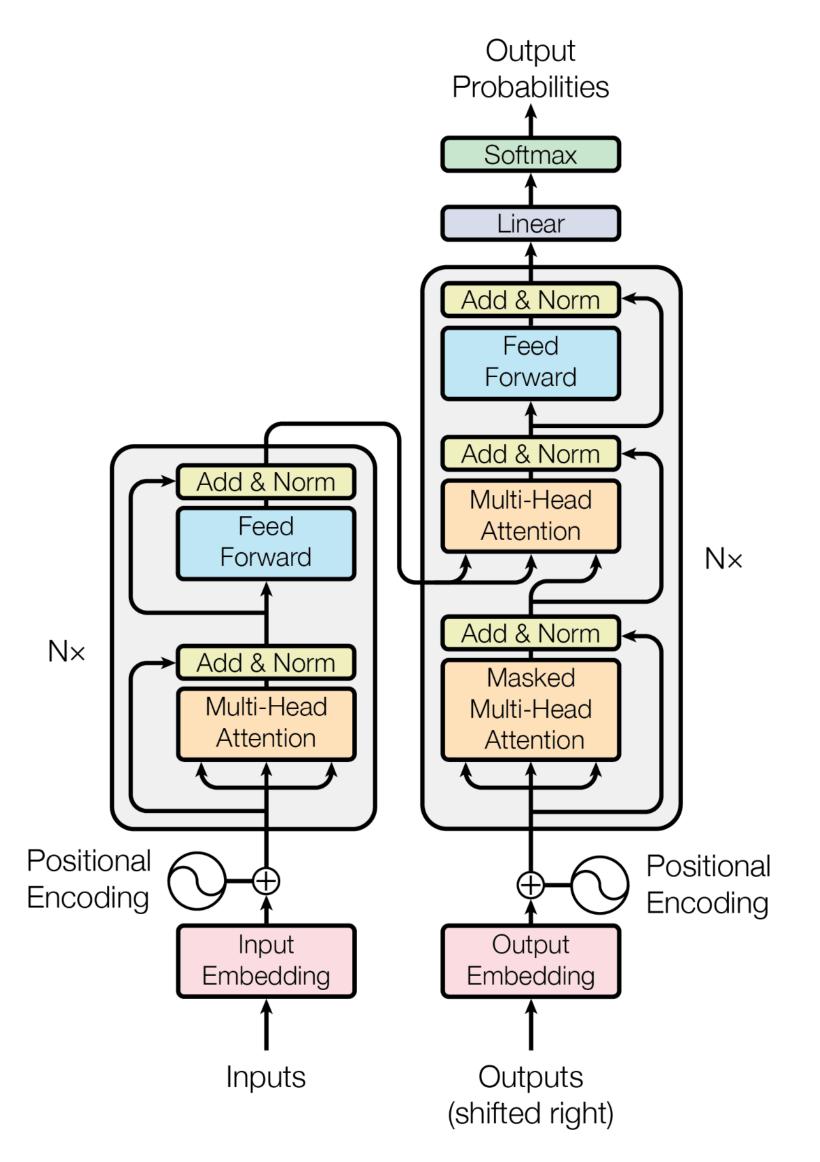
- Character-level:
 - Used several auxiliary losses

	Parame		
Model	train	inference	bpc
LSTM (Cooijmans et al. 2016)	-	-	1.43
BN-LSTM (Cooijmans et al. 2016)	-	-	1.36
HM-LSTM (Chung, Ahn, and Bengio 2016)	35	35	1.29
Recurrent Highway (Zilly et al. 2016)	45	45	1.27
mLSTM (Krause et al. 2016)	45	45	1.27
T12 (ours)	44	41	1.18
T64 (ours)	235	219	1.13
mLSTM + dynamic eval (Krause et al. 2017)	45	_	1.19

- GPT2 results (more next time)
 - Zero-shot evaluation: trained on very large corpus, evaluated on standard benchmarks

	WikiText2 (PPL)	PTB (PPL)	enwik8 (BPB)	text8 (BPC)	WikiText103 (PPL)	1BW (PPL)
SOTA	39.14	46.54	0.99	1.08	18.3	21.8
117M	29.41	65.85	1.16	1.17	37.50	75.20
345M	22.76	47.33	1.01	1.06	26.37	55.72
762M	19.93	40.31	0.97	1.02	22.05	44.575
1542M	18.34	35.76	0.93	0.98	17.48	42.16

Full Transformer Encoder-Decoder



Transformer Architecture Summary

- Main building block: attention
 - Encoder: self-attention
 - Decoder: *masked* self-attention
 - Decoder-encoder: cross-attention
- Position encodings/embeddings to inject information about sequence order
- Position-wise feed-forward networks for element-wise nonlinearities
- Residual connections + LayerNorm around every component

Transformers: Limitations

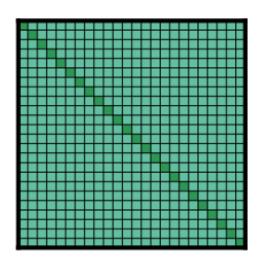
Quadratic Attention

- Attention computes similarity scores between all pairs of tokens
 - QK^T : [seq_len, seq_len] shape
 - In other words, size of attention is $O(n^2)$
- Prevents scaling to long sequences
 - Document-level:
 - Summarization
 - QA
 - ...
- Big area of current research: linear(-ish) attention mechanisms.

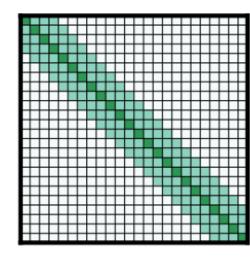
Some Examples

• Longformer:

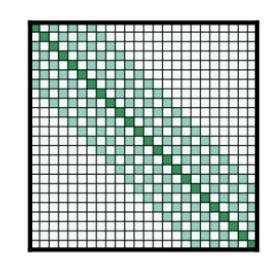
 Carefully control positions attended to



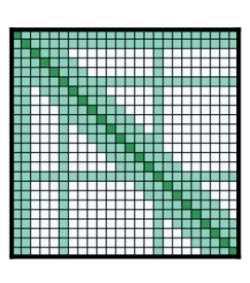
(a) Full n^2 attention



(b) Sliding window attention

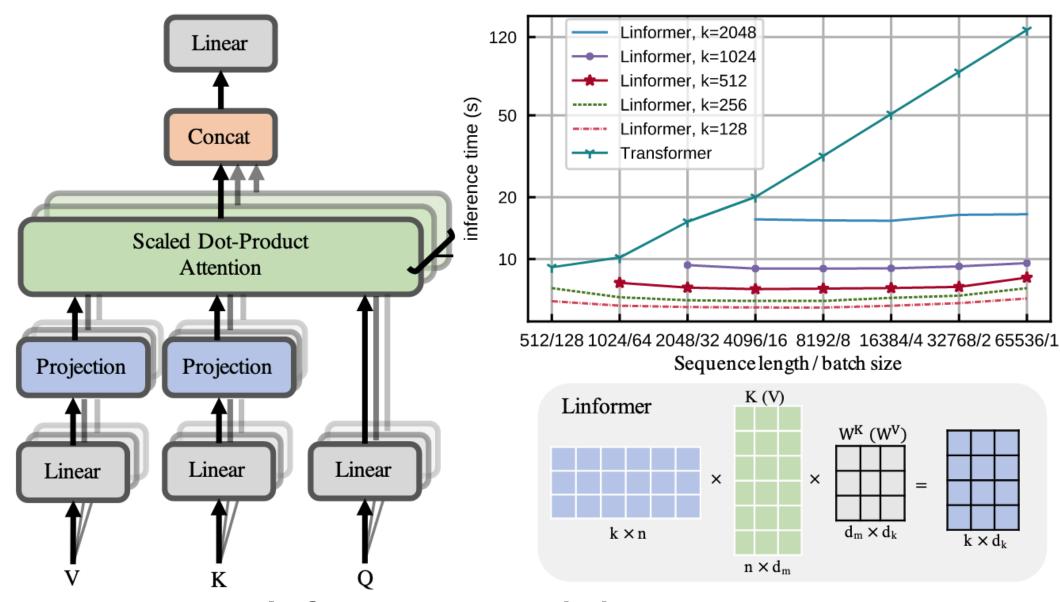


(c) Dilated sliding window



(d) Global+sliding window

- Linformer:
 - Additional projection of Keys/
 Values to smaller space
 - O(nk), with k a hyperparameter
- Survey paper



Inference speed does not scale with seq length

Recurrence in Generation

- Recall the basic method for generating from a decoder:
 - Feed initial token (e.g. BOS, or just a word/character)
 - Generate probability over next tokens
 - Sample next token from this distribution
 - Repeat until [EOS I max length I other criterion]
- This loop is unavoidable during generation
 - Transformer's gains on paralellizability: work for training, vanish for generation
 - In fact, RNN decoders tend to be much faster at inference time

Mixed/Hybrid Architectures

- Encoder-decoder: a general architecture
 - In principle, any model of the right type can be encoder and/or decoder
- "The Best of Both Worlds" for NMT
 - Transformer encoder + RNN decoder
- Google Translate's newest version

Encoder	Decoder	En→Fr Test BLEU
Trans. Big	Trans. Big	40.73 ± 0.19
RNMT+	RNMT+	41.00 ± 0.05
Trans. Big	RNMT+	$\textbf{41.12} \pm \textbf{0.16}$
RNMT+	Trans. Big	39.92 ± 0.21

• "Transformer models have been demonstrated to be generally more effective at machine translation than RNN models, but our work suggested that most of these quality gains were from the transformer *encoder*, and that the transformer *decoder* was not significantly better than the RNN decoder. Since the RNN decoder is much faster at inference time, we applied a variety of optimizations before coupling it with the transformer encoder. The resulting hybrid models are higher-quality, more stable in training, and exhibit lower latency."

Subword Tokenization

OOV and Vocab Size

- Word-level models:
 - Tokenize training data
 - Build vocabulary
 - Learn representations
- Two problems:
 - Cannot generalize at test time to OOV (out of vocab) words
 - (various subtleties, tricks, etc, but generally true)
 - Larger training data —> larger vocabulary
 - Its own problems, e.g. very expensive softmax over vocab in decoders
 - (Or put a cap on vocab size, but then miss lower-frequency words entirely)

Finer Representation Levels

- One solution: character-level models
 - Pros:
 - Small vocabulary size
 - No (or very little) OOV
 - Cons:
 - Much harder learning problems; need to learn everything about words, on top of phrases, sentences, etc.
- In-between solution: *sub-word* tokenization
 - Split words into pieces, but don't go all the way down to character level
 - Many methods: WordPiece, BytePair Encoding (BPE), ...

WordPiece Embeddings

- Another solution to OOV problem, from NMT context (see <u>Wu et al 2016</u>)
- Main idea:
 - Fix vocabulary size IVI in advance (e.g. 30k for BERT)
 - Choose IVI wordpieces (subwords) such that total number of wordpieces in the corpus is minimized
- Frequent words aren't split, but rarer ones are, e.g.:
- "Backpropagation was confusing at first, but now we grok it."
 - ["Back", "##prop", "##ag", "##ation", "was", "confusing", "at", "first", ",", "but", "now", "we", "gro", "##k", "it", "."]

Next Time

- This wraps up our general overview of the Transformer architecture
- Next time: why they have become so dominant in NLP in the last several years
 - Pre-training and fine-tuning paradigm
 - General idea
 - Several examples
- Then: how to interpret/analyze NLP models, followed by a series of special guest lectures