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Roadmap
● Modern multilingual models

● Motivation

● Architecture (XLM)

● Zero-shot transfer

● Evaluation

● How do they work? (spoiler: we don’t really know)

● How cross-lingual are they?

● Benchmarks
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Roadmap cont.
● Representation alignment

● Transfering monolingual models

● Newer work
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Motivation
● NLP applications are deployed to large varities of languages/localities

● Prohibitively expensive to train a new model for every language/variety

● Translation is especially intractable

● n languages leads to n2 language pairs

● Introducing a “hub” language more likely to result in translation artifacts

● Idea: train a model that can encode all languages you plan to use
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Modeling
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XLM
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https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf


XLM
● Key Ideas

● Use a shared subword 
vocabulary across 
languages

● Do normal language 
modeling on the combined 
language sets

● If parallel data is available, do 
Translation Language 
Modeling (TLM)
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XLM: TLM
● TLM == MLM with concatenated parallel sentences

● Idea: use each language to help predict the other
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“language 
embeddings” added 
along with positional



XLM: Results
● Racks up improvements. Better initializations for:

● Crosslingual classification (XLNI)

● Translation

● Low-resource LMs

● Crosslingual word embeddings
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XLM: XNLI Results
● XNLI = Cross-lingual Natural Language Inference

● i.e. does sentence A entail sentence B, contradict it, or neither?
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XLM: XNLI Baselines
● Translate-Train: translate English training data into the target language

● Translate-Test: translate target test set into English
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Zero-shot Transfer
● The ability to do zero-shot transfer is probably the greatest strength of 

crosslingual models

● This setting assumes

● Training set of plain text in several languages OR a pre-trained multilingual 
model

● Training data for downstream task, but only in English / other high-resource 
language

● Process: get crosslingual model, fine-tune it on English task data, then 
directly apply it to the task in a new language
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Since XLM
● A lot has happened since XLM

● XLM-R, mBART, XGLM, BLOOM

● May even be considered an “old” model at this point

● However

● Most subsequent models have re-used the same basic ideas

● Understanding this paper is a good way to understand others

● (TLM has stopped being used)
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“Curse of Multilinguality”
● The more languages a model 

covers, the worse it performs for 
individual languages

● “Crosslingual” models have 
become huge

● Best performance still comes 
when you have enough data to 
train a monolingual model

● Most languages do not have 
enough
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Language Up/Down-sampling
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Questions after XLM
● How do multilingual models work?

● How much data do you need for each language?

● How do you evaluate multilingual models?

● Do these work well for truly low-resource languages?
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Analysis
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Conneau et al. (2020)
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https://aclanthology.org/2020.acl-main.536/
https://aclanthology.org/2020.acl-main.536/


Conneau et al. (2020)
● A great paper which I recommend, but somewhat involved

● Takeaways

● Languages do not need to share vocabulary to get good performance

● Only about half the layers need to be shared between languages

● Monolingual BERTs trained for different languages create similar embeddings 
(especially at lower layers)

● Similar languages have similar BERT embeddings
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Conneau et al. (2020)
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Conneau et al. (2020)
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Conneau et al. (2020)
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Wu and Dredze (2020)
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https://aclanthology.org/2020.repl4nlp-1.16/


Wu and Dredze (2020)
● “Are all languages created equal in mBERT?”

● Short answer: no

● “mBERT does better than or comparable to baselines on high 
resource languages but does much worse on low resource 
languages”
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Wu and Dredze (2020)
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Evaluation
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XTREME
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(I hate names like 
this but oh well)



XTREME
● Like GLUE but for multilingual models

● Nine tasks

● 3 Question-Answering

● XNLI

● Paraphrase detection (PAWS-X)

● POS

● NER

● 2 Bitext mining (BUCC and Tatoeba)

28



Representation Alignment
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Alignment Motivation
● May be desirable to explicitly align a model’s vector representations 

between languages

● e.g. classification

● If the representation in language A gives the correct outcome, logical that 
having similar representations for other languages should also give the 
correct outcome

● For tasks like bitext mining, paraphrase detection, and dictionary induction, 
alignment is the whole point
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Xing et al. (2015)
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https://aclanthology.org/N15-1104/


Xing et al. (2015)
● Common hypothesis that vector spaces should be approximately 

isomorphic between languages

● This implies an invertible linear mapping W between the space of one 
language and another

● Xing et al. argue that this transformation should be an orthogonal one (i.e. a 
rotation or reflection of space)

● An orthogonal transformation W can be computed with the Orthogonal 
Procrustes method

● Alignment work is often centered on learning and refining W
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Conneau et al. (2018)
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https://openreview.net/forum?id=H196sainb


Conneau et al. (2018)
● A: Monolingual vector spaces

● B: Adversarial methods to bring distributions closer

● C: Orthogonal Procrustes

● D: Final aligned vector spaces

34



Tien and Steinert-Threlkeld (2021)

35

https://aclanthology.org/2022.acl-long.595/


Tien and Steinert-Threlkeld (2021)
● Cycle Consistency Loss: how 

invertible is the mapping between 
one language and another?

● Adversarial loss: can a discriminator 
tell the difference between language 
representations?
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Alignment Final Thoughts
● Can also just add difference between language embeddings as loss term

● Batch normalization has been shown to be helpful

● Alignment is tricky in general. Often does not work as expected
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Monolingual Transfer
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Artetxe, Ruder, and Yogatama (2020)
● How transferable to other languages is a monolingual model?

● Main idea

● Train a model on a high-resource language

● Freeze transformer layers, initialize new embeddings/vocab, train on new 
language

● Add in small “adapter layers” between transformer blocks

● Works strangely well
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https://aclanthology.org/2020.acl-main.421/


Artetxe, Ruder, and Yogatama (2020)
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Artetxe, Ruder, and Yogatama (2020)
● Advantages

● Very cheap — can take a model off the shelf and just re-train embeddings

● Does comparably to crosslingual models

● Caveats

● Not so many replicating studies

● This paper transferred to fairly high-resource languages
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Recent Work
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mBART
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https://aclanthology.org/2020.tacl-1.47/


mBART
● Seq2Seq transformer

● Trained to reconstruct a corrupted/masked sentence

● Multilingual, but no “crosslingual signal” w/ parallel sentences during pre-training

● Very good for initializing translation systems
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● Decoder-only (“causal/generative”) tranformer LM

● 564M-7.5B parameters

● Emphasis on doing the type of in-context learning seen with GPT-3

● From Meta

XGLM
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https://aclanthology.org/2022.emnlp-main.616/


BLOOM
● Very large decoder-only LM (176B parameters)

● Open access (from Huggingface, kinda)

● Also a strong emphasis on in-context learning
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https://bigscience.huggingface.co/blog/bloom


Questions?
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