Linear Algebra

Ling 575j: Deep Learning for NLP
C.M. Downey

Spring 2023

Today's Plan

- Review vector and matrix operations
- Discuss vector independence and span
- Dissect matrix multiplication
- Introduce linear transformations

Linear Algebra Objects

Linear Algebra Objects

- Scalars
- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, п, 7/22

Linear Algebra Objects

- Scalars
- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, п, 7/22
- Vectors
- Lists of scalars

Linear Algebra Objects

- Scalars
- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, п, 7/22
- Vectors
- Lists of scalars

Linear Algebra Objects

- Scalars
- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, п, 7/22
- Vectors
- Lists of scalars
- Matrices

- Lists of vectors

Linear Algebra Objects

- Scalars
- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, п, 7/22
- Vectors
- Lists of scalars
- Matrices

$$
x=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad A=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

- Lists of vectors

Vectors

Vectors

- By default, vectors are considered to be columns

Vectors

- By default, vectors are considered to be columns

$$
x=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Vectors

- By default, vectors are considered to be columns
- Transposed vectors are rows

$$
x=\left[\begin{array}{c}
1 \\
2 \\
3
\end{array}\right]
$$

Vectors

- By default, vectors are considered to be columns
- Transposed vectors are rows

$$
x=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad x^{T}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

Vectors

- By default, vectors are considered to be columns
- Transposed vectors are rows
- Often visualized as arrows or points in space

$$
x=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad x^{T}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

Vectors

- By default, vectors are considered to be columns
- Transposed vectors are rows
- Often visualized as arrows or points in space

Vector Properties

Vector Properties

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]
$$

Vector Properties

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]-\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2} \\
x_{3}-y_{3}
\end{array}\right]}
\end{aligned}
$$

Vector Properties

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right] \quad c\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
c x_{1} \\
c x_{2} \\
c x_{3}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]-\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2} \\
x_{3}-y_{3}
\end{array}\right]}
\end{aligned}
$$

Vector Spans and Spaces

Vector Independence

- Two vectors are linearly dependent iff there are scalars c_{1}, c_{2} :

Vector Independence

- Two vectors are linearly dependent iff there are scalars c_{1}, c_{2} :

$$
c_{1}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+c_{2}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Vector Independence

- Two vectors are linearly dependent iff there are scalars c_{1}, c_{2} :

$$
c_{1}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+c_{2}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- ...except for $c_{1}=c_{2}=0$ (which always gives the zero vector)

Vector Independence

- Two vectors are linearly dependent iff there are scalars c_{1}, c_{2} :

$$
c_{1}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+c_{2}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- ...except for $c_{1}=c_{2}=0$ (which always gives the zero vector)
- Otherwise the vectors are independent

Vector Independence

- Two vectors are linearly dependent iff there are scalars c_{1}, c_{2} :

$$
c_{1}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+c_{2}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- ...except for $c_{1}=c_{2}=0$ (which always gives the zero vector)
- Otherwise the vectors are independent
- Definition applies to any number of vectors and constants

Vector Independence

- Two vectors are linearly dependent iff there are scalars c_{1}, c_{2} :

$$
c_{1}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+c_{2}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- ...except for $c_{1}=c_{2}=0$ (which always gives the zero vector)
- Otherwise the vectors are independent
- Definition applies to any number of vectors and constants
- Note: $a=\mathbf{0}$ is used to indicate a vector of zeros

Vector (In)dependence Examples

- What constants solve this equation?

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Vector (In)dependence Examples

- What constants solve this equation?

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Vector (In)dependence Examples

- What constants solve this equation?

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+c_{3}\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Vector (In)dependence Examples

- What constants solve this equation?

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Vector (In)dependence Examples

Vector (In)dependence Examples

- Vectors are dependent if they are colinear

Vector (In)dependence Examples

- Vectors are dependent if they are colinear

Vector (In)dependence Examples

- Vectors are dependent if they are colinear
- Non-colinear vectors can also be dependent

Vector (In)dependence Examples

- Vectors are dependent if they are colinear
- Non-colinear vectors can also be dependent

Vector (In)dependence Examples

- Vectors are dependent if they are colinear
- Non-colinear vectors can also be dependent

(this is what adding vectors looks like)

Vector Spans

Vector Spans

- Adding together vectors with different constants is called a linear combination of those vectors

Vector Spans

- Adding together vectors with different constants is called a linear combination of those vectors
- The set of all linear combinations of some vectors is called their span

Vector Spans

- Adding together vectors with different constants is called a linear combination of those vectors
- The set of all linear combinations of some vectors is called their span

Spaces and Spans

Spaces and Spans

- The entirety of 1 -dimensional space is called R^{1}

Spaces and Spans

- The entirety of 1-dimensional space is called R^{1}
- 2-dimensional space is called R^{2}

Spaces and Spans

- The entirety of 1 -dimensional space is called R^{1}
- 2-dimensional space is called R^{2}
- and so on

Spaces and Spans

- The entirety of 1 -dimensional space is called R^{1}
- 2-dimensional space is called R^{2}
- and so on
- Two vectors of size 2 span R^{2} iff they are independent

Spaces and Spans

- The entirety of 1 -dimensional space is called R^{1}
- 2-dimensional space is called R^{2}
- and so on
- Two vectors of size 2 span R^{2} iff they are independent
- Three vectors of size 3 span R^{3} iff they are independent

Spaces and Spans

- The entirety of 1 -dimensional space is called R^{1}
- 2-dimensional space is called R^{2}
- and so on
- Two vectors of size 2 span R^{2} iff they are independent
- Three vectors of size 3 span R^{3} iff they are independent
- If the num of independent vectors is less than the vector dimension, they span a (hyper)plane within the larger space

Spaces and Spans

- The entirety of 1 -dimensional space is called R^{1}
- 2-dimensional space is called R^{2}
- and so on
- Two vectors of size 2 span R^{2} iff they are independent

- Three vectors of size 3 span R^{3} iff they are independent
- If the num of independent vectors is less than the vector dimension, they span a (hyper)plane within the larger space

Spaces and Spans

- The entirety of 1 -dimensional space is called R^{1}
- 2-dimensional space is called R^{2}
- and so on
- Two vectors of size 2 span R^{2} iff they are independent

- Three vectors of size 3 span R^{3} iff they are independent
- If the num of independent vectors is less than the vector dimension, they span a (hyper)plane within the larger space
- Ex: \mathbf{a} and \mathbf{b} above span a 2-D plane in R^{3}

Basis of a Space

Basis of a Space

- A set of independent vectors that span a space are called a basis for that space

Basis of a Space

- A set of independent vectors that span a space are called a basis for that space
- The simplest bases for R^{2} and R^{3} are known as the Standard Basis:

Basis of a Space

- A set of independent vectors that span a space are called a basis for that space
- The simplest bases for R^{2} and R^{3} are known as the Standard Basis:

$$
i=\left[\begin{array}{l}
R^{2} \\
0
\end{array}\right] j=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Basis of a Space

- A set of independent vectors that span a space are called a basis for that space
- The simplest bases for R^{2} and R^{3} are known as the Standard Basis:

$$
i=\left[\begin{array}{l}
R^{2} \\
0
\end{array}\right] j=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad i=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] j=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] k=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Basis of a Space

- A set of independent vectors that span a space are called a basis for that space
- The simplest bases for R^{2} and R^{3} are known as the Standard Basis:
- These are not the only bases for these spaces

$$
i=\left[\begin{array}{l}
R^{2} \\
0
\end{array}\right] j=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad i=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] j=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] k=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Span Video

Span Video

Matrix Multiplication

Quick reminder: Dot Product

$$
a \cdot b=a^{T} b=a_{1} b_{1}+a_{2} b_{2} \ldots+a_{n} b_{n}
$$

Quick reminder: Dot Product

$$
a \cdot b=a^{T} b=a_{1} b_{1}+a_{2} b_{2} \ldots+a_{n} b_{n}
$$

(vectors need to be the same length)

Matrix-Vector Multiplication

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right] x=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
A x=?
\end{gathered}
$$

Matrix Multiplication Rules

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
$\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]$

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]$

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]$

2 columns

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]$

2 columns

" $4 x 2$ matrix"

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right] \quad\left[\begin{array}{ccc}7 & 9 & 11 \\ 8 & 10 & 12\end{array}\right]$

2 columns

"4x2 matrix"

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right] \quad\left[\begin{array}{ccc}7 & 9 & 11 \\ 8 & 10 & 12\end{array}\right]$

2 columns

"4x2 matrix"

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]\left[\begin{array}{ccc}7 & 9 & 11 \\ 8 & 10 & 12\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]\left[\begin{array}{ll}7 & 10 \\ 8 & 11 \\ 9 & 12\end{array}\right]$

2 columns

[^0]
Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]\left[\begin{array}{ccc}7 & 9 & 11 \\ 8 & 10 & 12\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right] \quad\left[\begin{array}{ll}7 & 10 \\ 8 & 11 \\ 9 & 12\end{array}\right]$

2 columns

[^1]
Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ccc}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right] ~\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]\left[\begin{array}{ccc}7 & 9 & 11 \\ 8 & 10 & 12\end{array}\right] ~<~\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]\left[\begin{array}{ll}7 & 10 \\ 8 & 11 \\ 9 & 12\end{array}\right]$

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match
4 rows $\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]\left[\begin{array}{ccc}7 & 9 & 11 \\ 8 & 10 & 12\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right] \quad\left[\begin{array}{ll}7 & 10 \\ 8 & 11 \\ 9 & 12\end{array}\right]$

2 columns
" 4×2 matrix"
$\left.\left.\begin{array}{cc}{\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]}\end{array}\right] \begin{array}{l}7 \\ 8\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$

Matrix Multiplication Rules

- Matrix multiplication is not commutative: $A x \neq x A$
- The "inner" sizes of the matrices must match

$$
4 \text { rows }\left[\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]\left[\begin{array}{ccc}
7 & 9 & 11 \\
8 & 10 & 12
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \quad\left[\begin{array}{ll}
7 & 10 \\
8 & 11 \\
9 & 12
\end{array}\right]
$$

2 columns

"4x2 matrix"

Matrix-Vector Multiplication

The Traditional Way

$$
\left[\begin{array}{c}
1 \\
\hline
\end{array}\right.
$$

Matrix-Vector Multiplication

The Traditional Way

Matrix-Vector Multiplication

The Traditional Way

Matrix-Vector Multiplication

The Traditional Way

Matrix-Vector Multiplication

The Traditional Way

Matrix-Vector Multiplication

The Traditional Way

Matrix-Vector Multiplication

The Traditional Way

$$
\left[\begin{array}{c}
1 \\
\hline
\end{array}\right.
$$

Matrix-Vector Multiplication

The Traditional Way

Matrix-Vector Multiplication

The Traditional Way

Matrix-Vector Multiplication

Matrix-Vector Multiplication

- Alternative way to think about this multiplication

Matrix-Vector Multiplication

- Alternative way to think about this multiplication

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Matrix-Vector Multiplication

- Alternative way to think about this multiplication
- The matrix consists of column vectors

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Matrix-Vector Multiplication

- Alternative way to think about this multiplication
- The matrix consists of column vectors
- The vector provides the constants for a linear combination of the columns

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Matrix-Vector Multiplication

- Alternative way to think about this multiplication
- The matrix consists of column vectors
- The vector provides the constants for a linear combination of the columns

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \longrightarrow 1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+1\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+1\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
12 \\
15 \\
18
\end{array}\right]
$$

Matrix-Vector Multiplication

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \longrightarrow 1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+1\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+1\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
12 \\
15 \\
18
\end{array}\right]
$$

Matrix-Vector Multiplication

-What is the significance of this alternate view?

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \longrightarrow 1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+1\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+1\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
12 \\
15 \\
18
\end{array}\right]
$$

Matrix-Vector Multiplication

-What is the significance of this alternate view?

- For all $A x=b, b$ is expressed as a linear combination of A 's columns, and so...

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \longrightarrow 1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+1\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+1\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
12 \\
15 \\
18
\end{array}\right]
$$

Matrix-Vector Multiplication

-What is the significance of this alternate view?

- For all $A x=b, b$ is expressed as a linear combination of A 's columns, and SO...
- ...b is always in the span of A 's columns

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \longrightarrow 1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+1\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+1\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
12 \\
15 \\
18
\end{array}\right]
$$

Matrix-Vector Multiplication

-What is the significance of this alternate view?

- For all $A x=b, b$ is expressed as a linear combination of A 's columns, and so...
- ... b is always in the span of A 's columns
- This is called the Column Space of $A, C(A)$

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \longrightarrow 1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+1\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+1\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
12 \\
15 \\
18
\end{array}\right]
$$

Column Space

$$
\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

Column Space

- What can you tell about the Column Space of this matrix?
$\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 5\end{array}\right]$

Column Space

- What can you tell about the Column Space of this matrix?
- 3 independent columns
$\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 5\end{array}\right]$

Column Space

- What can you tell about the Column Space of this matrix?
- 3 independent columns
- C(A) spans R^{3}
$\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 5\end{array}\right]$

Column Space

- What can you tell about the Column Space of this matrix?
- 3 independent columns
- C(A) spans R^{3}
- Ax spans R^{3}
$\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 5\end{array}\right]$

Column Space

$$
\left[\begin{array}{lll}
1 & 4 & 5 \\
2 & 5 & 7 \\
3 & 6 & 9
\end{array}\right]
$$

Column Space

- What can you tell about the Column Space of this matrix?
$\left[\begin{array}{cc}1 & 4 \\ 2 & 4 \\ 3 & 5 \\ 3 & 8\end{array}\right]$

Column Space

- What can you tell about the Column Space of this matrix?
- 2 independent columns
$\left[\begin{array}{lll}1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9\end{array}\right]$

Column Space

- What can you tell about the Column Space of this matrix?
- 2 independent columns

Column Space

- What can you tell about the Column Space of this matrix?
- 2 independent columns
- C(A) spans a 2D plane in R^{3}

Column Space

- What can you tell about the Column

Space of this matrix?

- 2 independent columns
- C(A) spans a 2D plane in R^{3}
- Ax spans a 2D plane in R^{3}

Column Space

$$
\left[\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right]
$$

Column Space

- What can you tell about the Column Space of this matrix? What is the size of "input" vector x ?

Column Space

- What can you tell about the Column Space of this matrix? What is the size of "input" vector x ?
- 2 independent columns

Column Space

- What can you tell about the Column Space of this matrix? What is the size of "input" vector x ?
- 2 independent columns
- x is length 4

Column Space

- What can you tell about the Column Space of this matrix? What is the size of "input" vector x ?
- 2 independent columns
- x is length 4
- C(A) spans a 2D plane in R^{4}

Column Space

- What can you tell about the Column Space of this matrix? What is the size of "input" vector x ?
- 2 independent columns
- x is length 4
- C(A) spans a 2D plane in R^{4}
- $A x$ spans a 2D plane in R^{4}

Matrix Rank

Matrix Rank

- The number of independent columns in a matrix is called the rank

Matrix Rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space

Matrix Rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
- Rank 1: line

Matrix Rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
- Rank 1: line
- Rank 2: plane

Matrix Rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
- Rank 1: line
- Rank 2: plane
- Rank 3: 3D hyperplane

Matrix Rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
- Rank 1: line
- Rank 2: plane
- Rank 3: 3D hyperplane
- etc.

Matrix Rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
- Rank 1: line
- Rank 2: plane
- Rank 3: 3D hyperplane
- etc.
- MxN matrix can be considered a function from R^{N} to R^{M}

Matrix Rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
- Rank 1: line
- Rank 2: plane
- Rank 3: 3D hyperplane
- etc.
- MxN matrix can be considered a function from R^{N} to R^{M}
- However, the function's range may not span R^{M}, unless it is rank \mathbf{M}

Linear Transformations

Identity Matrix

Identity Matrix

- The Identity Matrix I always returns the same vector/matrix it's multiplied with

Identity Matrix

- The Identity Matrix I always returns the same vector/matrix it's multiplied with
- e.g. $I x=x$ and $I A=A$

Identity Matrix

- The Identity Matrix I always returns the same vector/matrix it's multiplied with
- e.g. $I x=x$ and $I A=A$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Identity Matrix

- The Identity Matrix I always returns the same vector/matrix it's multiplied with
- e.g. $I x=x$ and $I A=A$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Identity Matrix

- The Identity Matrix I always returns the same vector/matrix it's multiplied with
- e.g. $I x=x$ and $I A=A$
- Where have we seen these columns before?

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Identity Matrix

- The Identity Matrix I always returns the same vector/matrix it's multiplied with
- e.g. $I x=x$ and $I A=A$
- Where have we seen these columns before?

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
i & j
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Identity Matrix

- The Identity Matrix I always returns the same vector/matrix it's multiplied with
- e.g. $I x=x$ and $I A=A$
- Where have we seen these columns before?

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
i & j
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Identity Matrix as a Basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis

vectors

- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\underset{i}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\frac{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3}{\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5} \underset{i}{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Identity Matrix as a Basis

- Vectors can be viewed as being composed of the Standard Basis vectors
- A vector is a linear combination of this basis

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\frac{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3}{\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5} \underset{i}{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Linear Transformation

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+5\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+5\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+5\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+5\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=
$$

new basis

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5 \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns
- This is called a linear transformation

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns
- This is called a linear transformation
- This matrix rotates the space by 45° and stretches it

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 \underset{i^{\prime}}{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}+5\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=
$$

Linear Transformation

- Multiplying by a matrix converts a vector to a new basis
- The basis consists of the matrix columns
- This is called a linear transformation
- This matrix rotates the space by 45° and stretches it

$$
\underset{\text { new basis }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3\left[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
i^{\prime}
\end{array} \underset{j^{\prime}}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}=\right.
$$

Linear Transformation

Visualizing Linear Transformations

Visualizing Linear Transformations

Why do we need this?

Why do we need this?

- Linear transformations (aka matrix multiplications) are the basic operation of neural networks

Why do we need this?

- Linear transformations (aka matrix multiplications) are the basic operation of neural networks
- A feedforward NN layer:

Why do we need this?

- Linear transformations (aka matrix multiplications) are the basic operation of neural networks
- A feedforward NN layer:
- Takes in an input vector

Why do we need this?

- Linear transformations (aka matrix multiplications) are the basic operation of neural networks
- A feedforward NN layer:
- Takes in an input vector
- Applies a linear transformation

Why do we need this?

- Linear transformations (aka matrix multiplications) are the basic operation of neural networks
- A feedforward NN layer:
- Takes in an input vector
- Applies a linear transformation
- Adds a non-linear activation function (we'll cover this later)

Why do we need this?

- Linear transformations (aka matrix multiplications) are the basic operation of neural networks
- A feedforward NN layer:
- Takes in an input vector
- Applies a linear transformation
- Adds a non-linear activation function (we'll cover this later)
- TLDR: Neural Nets transform vectors and vector spaces

Extra Credit Opportunity

Extra Credit Opportunity

- There will not be a homework exclusively on Linear Algebra

Extra Credit Opportunity

- There will not be a homework exclusively on Linear Algebra
- I might sneak in a few questions in a later assignment

Extra Credit Opportunity

- There will not be a homework exclusively on Linear Algebra
- I might sneak in a few questions in a later assignment
- For 10pts extra credit:

Extra Credit Opportunity

- There will not be a homework exclusively on Linear Algebra
- I might sneak in a few questions in a later assignment
- For 10pts extra credit:
- Watch some or all of this great Linear Algebra youtube series

Extra Credit Opportunity

- There will not be a homework exclusively on Linear Algebra
- I might sneak in a few questions in a later assignment
- For 10pts extra credit:
- Watch some or all of this great Linear Algebra youtube series
- Post a question / musing on the Canvas Discussion thread titled "Linear Algebra Youtube Discussion"

Extra Credit Opportunity

- There will not be a homework exclusively on Linear Algebra
- I might sneak in a few questions in a later assignment
- For 10pts extra credit:
- Watch some or all of this great Linear Algebra youtube series
- Post a question / musing on the Canvas Discussion thread titled "Linear Algebra Youtube Discussion"
- You can also also reply to another student's question for credit

[^0]: " $4 x 2$ matrix"

[^1]: " $4 x 2$ matrix"

