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Today’s Plan
● Review vector and matrix operations

● Discuss vector independence and span

● Dissect matrix multiplication

● Introduce linear transformations
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Vector Spans and Spaces
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Vector Independence
● Two vectors are linearly dependent iff there are scalars :c1, c2
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Vector Independence
● Two vectors are linearly dependent iff there are scalars :c1, c2
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● …except for  (which always gives the zero vector)c1 = c2 = 0
● Otherwise the vectors are independent

● Definition applies to any number of vectors and constants

● Note:  is used to indicate a vector of zerosa = 0



Vector (In)dependence Examples
● What constants solve this equation?
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● Vectors are dependent if they are colinear

● Non-colinear vectors can also be dependent

Vector (In)dependence Examples
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(3,3)
(6,6)

(3,3)

(-3,4)

(0,-7) (this is what 
adding 

vectors looks 
like)
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Spaces and Spans
● The entirety of 1-dimensional space is called R1

● 2-dimensional space is called R2

● and so on

● Two vectors of size 2 span  iff they are independentR2

● Three vectors of size 3 span  iff they are independentR3

● If the num of independent vectors is less than the vector dimension, they span 
a (hyper)plane within the larger space

● Ex: a and b above span a 2-D plane in R3
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Basis of a Space
● A set of independent vectors that span a space are called a basis for that 

space

● The simplest bases for  and  are known as the Standard Basis:R2 R3

● These are not the only bases for these spaces

15
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(vectors need to be the same length)
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Matrix Multiplication Rules
● Matrix multiplication is not commutative: Ax ≠ xA

● The “inner” sizes of the matrices must match

20

4 rows

2 columns

“4x2 matrix”

3x2 2x3 3x2 3x2

3x2 2x1 3x2 3x1
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Matrix-Vector Multiplication
● What is the significance of this alternate view?

● For all ,  is expressed as a linear combination of ’s columns, and 
so…

Ax = b b A

● …  is always in the span of ’s columnsb A

● This is called the Column Space of , A C(A)

25
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● What can you tell about the Column 

Space of this matrix?
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Matrix Rank
● The number of independent columns in a matrix is called the rank

● The rank determines the dimension of the column space

● Rank 1: line

● Rank 2: plane

● Rank 3: 3D hyperplane

● etc.

● MxN matrix can be considered a function from  to RN RM

● However, the function’s range may not span , unless it is rank MRM
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Why do we need this?
● Linear transformations (aka matrix multiplications) are the basic operation 

of neural networks

● A feedforward NN layer:

● Takes in an input vector

● Applies a linear transformation

● Adds a non-linear activation function (we’ll cover this later)

● TLDR: Neural Nets transform vectors and vector spaces
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Extra Credit Opportunity
● There will not be a homework exclusively on Linear Algebra

● I might sneak in a few questions in a later assignment

● For 10pts extra credit:

● Watch some or all of this great Linear Algebra youtube series

● Post a question / musing on the Canvas Discussion thread titled “Linear 
Algebra Youtube Discussion”

● You can also also reply to another student’s question for credit
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