Linear Algebra

Ling 575j: Deep Learning for NLP C.M. Downey Spring 2023

Today's Plan

- Review vector and matrix operations
- Discuss vector independence and span
- Dissect matrix multiplication
- Introduce linear transformations

• Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22

• Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22
- Vectors
 - *Lists* of scalars

• Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22
- Vectors
 - *Lists* of scalars

x =

2 3

• Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22
- Vectors
 - *Lists* of scalars
- Matrices
 - Lists of vectors

x =

23

• Scalars

- Single numbers
- What you're used to elsewhere in math
- examples: 0, 1, 3.14, π, 7/22
- Vectors
 - *Lists* of scalars
- **Matrices**
 - Lists of vectors

 ${\mathcal X}$

$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$ 2 3

$\begin{array}{c|c} 1 \\ x = & 2 \\ 3 \end{array}$

• *Transposed* vectors are rows

• *Transposed* vectors are rows

Vectors

- By default, vectors are considered to be *columns*
 - *Transposed* vectors are rows
 - Often visualized as **arrows** or **points** in space

- By default, vectors are considered to be *columns*
 - *Transposed* vectors are rows
 - Often visualized as **arrows** or **points** in space

Vector Properties

Vector Properties

Vector Properties

Vector Properties x_1 $C\mathcal{X}_1$ Cx_2 , \boldsymbol{C} x_2 x_3 $x_1 - y_1$ $x_2 - y_2$ (c is a scalar) $y_3 - y_3$

Vector Spans and Spaces

• Two vectors are linearly **dependent** iff there are scalars c_1, c_2 :

• Two vectors are linearly **dependent** iff there are scalars c_1, c_2 :

• Two vectors are linearly **dependent** iff there are scalars c_1, c_2 :

• ...except for $c_1 = c_2 = 0$ (which always gives the zero vector)

• Two vectors are linearly **dependent** iff there are scalars c_1, c_2 :

• ...except for $c_1 = c_2 = 0$ (which always gives the zero vector)

• Otherwise the vectors are **independent**

• Two vectors are linearly **dependent** iff there are scalars c_1, c_2 :

- ...except for $c_1 = c_2 = 0$ (which always gives the zero vector)
- Otherwise the vectors are **independent**
- Definition applies to any number of vectors and constants

• Two vectors are linearly **dependent** iff there are scalars c_1, c_2 :

- ...except for $c_1 = c_2 = 0$ (which always gives the zero vector)
- Otherwise the vectors are **independent**
- Definition applies to any number of vectors and constants
- Note: a = 0 is used to indicate a vector of zeros

	b_1		$\begin{bmatrix} 0 \end{bmatrix}$
c_2	b_2	—	0
	b_3		0

• Vectors are dependent if they are colinear

• Vectors are dependent if they are **colinear**

- Vectors are dependent if they are **colinear**
- Non-colinear vectors can also be dependent

- Vectors are dependent if they are **colinear**
- Non-colinear vectors can also be dependent

- Vectors are dependent if they are **colinear**
- Non-colinear vectors can also be dependent

(this is what adding vectors looks like)

Vector Spans

Adding together vectors with different constants is called a linear **combination** of those vectors

Vector Spans

- Adding together vectors with different constants is called a linear **combination** of those vectors

Vector Spans

• The set of all linear combinations of some vectors is called their span

Vector Spans

- Adding together vectors with different constants is called a linear **combination** of those vectors

• The set of all linear combinations of some vectors is called their span

• The entirety of 1-dimensional space is called R^1

- The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called R^2

- The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called R^2
 - and so on

- The entirety of 1-dimensional space is called R^1
 - 2-dimensional space is called R^2
 - and so on
- Two vectors of size 2 span R^2 iff they are independent

- The entirety of 1-dimensional space is called R^{\perp}
 - 2-dimensional space is called R^2
 - and so on
- Two vectors of size 2 span R^2 iff they are independent
- Three vectors of size 3 span R^3 iff they are independent

- The entirety of 1-dimensional space is called R^{\perp}
 - 2-dimensional space is called R^2
 - and so on
- Two vectors of size 2 span R^2 iff they are independent
- Three vectors of size 3 span R^3 iff they are independent
- If the num of independent vectors is less than the vector dimension, they span a (hyper)plane within the larger space

- The entirety of 1-dimensional space is called R^{\perp}
 - 2-dimensional space is called R^2
 - and so on
- Two vectors of size 2 span R^2 iff they are independent
- Three vectors of size 3 span R^3 iff they are independent
- If the num of independent vectors is less than the vector dimension, they span a (hyper)plane within the larger space

 $a = \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} b = \begin{vmatrix} 4 \\ 5 \\ 6 \end{vmatrix}$

- The entirety of 1-dimensional space is called R^{\perp}
 - 2-dimensional space is called R^2
 - and so on
- Two vectors of size 2 span R^2 iff they are independent
- Three vectors of size 3 span R^3 iff they are independent
- If the num of independent vectors is less than the vector dimension, they span a (hyper)plane within the larger space
 - Ex: **a** and **b** above span a **2-D** plane in R^3

 $a = \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} b = \begin{vmatrix} 4 \\ 5 \\ 6 \end{vmatrix}$

• A set of independent vectors that span a space are called a **basis** for that space

- space
 - The simplest bases for R^2 and R^3 are known as the **Standard Basis**:

• A set of independent vectors that span a space are called a basis for that

- space
 - The simplest bases for R^2 and R^3 are known as the **Standard Basis**:

$$R^2$$

• A set of independent vectors that span a space are called a **basis** for that

- space
 - The simplest bases for R^2 and R^3 are known as the **Standard Basis**:

$$R^2$$

• A set of independent vectors that span a space are called a **basis** for that

- space
 - The simplest bases for R^2 and R^3 are known as the **Standard Basis**:
 - These are not the only bases for these spaces

$$R^2$$

• A set of independent vectors that span a space are called a **basis** for that

 R^3 $i = \begin{vmatrix} 1 \\ 0 \end{vmatrix} j = \begin{vmatrix} 0 \\ 1 \end{vmatrix} \qquad i = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} j = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} k = \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$

Span Video

W UNIVERSITY of WASHINGTON

Span Video

W UNIVERSITY of WASHINGTON

Matrix Multiplication

Quick reminder: Dot Product

$a \cdot b = a^T b = a_1 b_1 + a_2 b_2 \dots + a_n b_n$

Quick reminder: Dot Product

$a \cdot b = a^T b = a_1 b_1 + a_2 b_2 \dots + a_n b_n$

(vectors need to be the same length)

Matrix-Vector Multiplication

Ax = ?

W UNIVERSITY of WASHINGTON

• Matrix multiplication is **not** commutative: $Ax \neq xA$

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

2 columns

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

2 columns

"4x2 matrix"

- Matrix multiplication is **not** commutative: $Ax \neq xA$

2 columns

"4x2 matrix"

- Matrix multiplication is **not** commutative: $Ax \neq xA$
- The "inner" sizes of the matrices must match

- Matrix multiplication is **not** commutative: $Ax \neq xA$

- Matrix multiplication is **not** commutative: $Ax \neq xA$

- Matrix multiplication is **not** commutative: $Ax \neq xA$

$$\begin{bmatrix} 7\\ 8 \end{bmatrix}$$

- Matrix multiplication is **not** commutative: $Ax \neq xA$

$$\begin{bmatrix} 7\\ 8 \end{bmatrix}$$

- Matrix multiplication is **not** commutative: $Ax \neq xA$

- Matrix multiplication is **not** commutative: $Ax \neq xA$

The Traditional Way

The Traditional Way

The Traditional Way

The Traditional Way

The Traditional Way

The Traditional Way

The Traditional Way

The Traditional Way

The Traditional Way

• Alternative way to think about this multiplication

Alternative way to think about this multiplication

$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- Alternative way to think about this multiplication
 - The matrix consists of **column vectors**

- Alternative way to think about this multiplication
 - The matrix consists of column vectors
 - The vector provides the constants for a linear combination of the columns

- Alternative way to think about this multiplication
 - The matrix consists of column vectors
 - The vector provides the constants for a linear combination of the columns

• What is the significance of this alternate view?

• What is the significance of this alternate view? • For all Ax = b, b is expressed as a linear combination of A's columns, and SO...

- What is the significance of this alternate view? • For all Ax = b, b is expressed as a linear combination of A's columns, and SO...
 - $\dots b$ is always in the span of A's columns

- What is the significance of this alternate view?
 - For all Ax = b, b is expressed as a linear combination of A's columns, and SO...
 - $\dots b$ is always in the span of A's columns
 - This is called the **Column Space of** A, C(A)

0 1 3

 What can you tell about the Column Space of this matrix?

- What can you tell about the Column Space of this matrix?
 - 3 independent columns

- What can you tell about the Column Space of this matrix?
 - 3 independent columns
 - C(A) spans R^3

- What can you tell about the Column Space of this matrix?
 - 3 independent columns
 - C(A) spans R^3
 - Ax spans R^3

5 L '

 What can you tell about the Column Space of this matrix?

- What can you tell about the Column Space of this matrix?
 - 2 independent columns

- What can you tell about the Column Space of this matrix?
 - 2 independent columns

third column not independent of first two

- What can you tell about the Column Space of this matrix?
 - 2 independent columns
 - C(A) spans a **2D** plane in R^3

third column not independent of first two

- What can you tell about the Column Space of this matrix?
 - 2 independent columns
 - C(A) spans a **2D** plane in R^3
 - Ax spans a **2D** plane in R^3

third column not independent of first two

 $oldsymbol{W}$ university of washington

 What can you tell about the Column Space of this matrix? What is the size of "input" vector *x*?

റ

- What can you tell about the Column Space of this matrix? What is the size of "input" vector *x*?
 - 2 independent columns

- What can you tell about the Column Space of this matrix? What is the size of "input" vector *x*?
 - 2 independent columns
 - x is length 4

- What can you tell about the Column Space of this matrix? What is the size of "input" vector *x*?
 - 2 independent columns
 - x is length 4
 - C(A) spans a **2D** plane in R^4

- What can you tell about the Column Space of this matrix? What is the size of "input" vector *x*?
 - 2 independent columns
 - x is length 4
 - C(A) spans a **2D** plane in R^4
 - Ax spans a **2D** plane in R^4

• The number of independent columns in a matrix is called the rank

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space

- The number of independent columns in a matrix is called the rank
- The rank determines the dimension of the column space
 - Rank 1: line

- The number of independent columns in a matrix is called the rank
- The rank determines the **dimension of the column space**
 - Rank 1: line
 - Rank 2: plane

- The number of independent columns in a matrix is called the rank
- The rank determines the **dimension of the column space**
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: **3D hyperplane**

- The number of independent columns in a matrix is called the rank
- The rank determines the **dimension of the column space**
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: **3D hyperplane**
 - etc.

- The number of independent columns in a matrix is called the rank
- The rank determines the **dimension of the column space**
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: **3D hyperplane**

• etc.

• MxN matrix can be considered a **function** from R^N to R^M

- The number of independent columns in a matrix is called the **rank**
- The rank determines the **dimension of the column space**
 - Rank 1: line
 - Rank 2: plane
 - Rank 3: **3D hyperplane**

• etc.

• MxN matrix can be considered a **function** from R^N to R^M

• However, the function's range may not span R^M , unless it is rank M

Linear Transformations

with

• The Identity Matrix I always returns the same vector/matrix it's multiplied

- with
 - e.g. Ix = x and IA = A

• The Identity Matrix I always returns the same vector/matrix it's multiplied

- with
 - e.g. Ix = x and IA = A

• The Identity Matrix I always returns the same vector/matrix it's multiplied

- with
 - e.g. Ix = x and IA = A

• The Identity Matrix I always returns the same vector/matrix it's multiplied

- with
 - e.g. Ix = x and IA = A
 - Where have we seen these columns before?

• The Identity Matrix I always returns the same vector/matrix it's multiplied

- with
 - e.g. Ix = x and IA = A
 - Where have we seen these columns before?

• The Identity Matrix I always returns the same vector/matrix it's multiplied

- with
 - e.g. Ix = x and IA = A
 - Where have we seen these columns before?

• The Identity Matrix I always returns the same vector/matrix it's multiplied

$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 Vectors can be viewed as being composed of the Standard Basis vectors

$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

 Vectors can be viewed as being composed of the Standard Basis vectors

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

Identity Matrix as a Basis

 Vectors can be viewed as being composed of the Standard Basis vectors

• A vector is a linear combination of this basis

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
i

$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

 Multiplying by a matrix converts a vector to a new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- new basis

- Multiplying by a matrix converts a vector to a new basis • The basis consists of the matrix columns • This is called a **linear transformation**

 - This matrix **rotates** the space by 45° and stretches it

- Multiplying by a matrix converts a vector to a new basis
 - The basis consists of the matrix columns
 - This is called a **linear transformation**
 - This matrix **rotates** the space by 45° and stretches it

Visualizing Linear Transformations

Visualizing Linear Transformations

 $oldsymbol{W}$ university of washington

• Linear transformations (aka matrix multiplications) are the basic operation of neural networks

- of neural networks
- A feedforward NN layer:

- of neural networks
- A feedforward NN layer:
 - Takes in an **input vector**

- of neural networks
- A feedforward NN layer:
 - Takes in an input vector
 - Applies a linear transformation

- of neural networks
- A feedforward NN layer:
 - Takes in an **input vector**
 - Applies a **linear transformation**
 - Adds a **non-linear activation function** (we'll cover this later)

- of neural networks
- A feedforward NN layer:
 - Takes in an **input vector**
 - Applies a **linear transformation**
 - Adds a **non-linear activation function** (we'll cover this later)
- TLDR: Neural Nets transform vectors and vector spaces

• There will **not** be a homework exclusively on Linear Algebra

- There will **not** be a homework exclusively on Linear Algebra
 - I might sneak in a few questions in a later assignment

- There will **not** be a homework exclusively on Linear Algebra
 - I might sneak in a few questions in a later assignment
- For 10pts extra credit:

- There will **not** be a homework exclusively on Linear Algebra
 - I might sneak in a few questions in a later assignment
- For 10pts extra credit:
 - Watch some or all of this great Linear Algebra youtube series

- There will **not** be a homework exclusively on Linear Algebra
 - I might sneak in a few questions in a later assignment
- For 10pts extra credit:
 - Watch some or all of this great Linear Algebra youtube series
 - Post a question / musing on the Canvas Discussion thread titled "Linear Algebra Youtube Discussion"

- There will not be a homework exclusively on Linear Algebra
 - I might sneak in a few questions in a later assignment
- For 10pts extra credit:
 - Watch some or all of this great Linear Algebra youtube series
 - Post a question / musing on the Canvas Discussion thread titled "Linear Algebra Youtube Discussion"
 - You can also also reply to another student's question for credit

