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Today's Plan

e Review vector and matrix operations
e Discuss vector independence and span
e Dissect matrix multiplication

e Introduce linear transformations
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Linear Algebra Objects

e Scalars
e Single numbers

e \What you're used to elsewhere in math

e examples: 0, 1, 3.14, 11, 7/22

1 1

e Vectors
e Lists of scalars r = |2 A — | 2
e Matrices 3 3

e Lists of vectors
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e By default, vectors are considered to be columns
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e By default, vectors are considered to be columns
® [ransposed vectors are rows

e Often visualized as arrows or points in space
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X1 Y1 r1 T Y1
To| + Y2 = [T2 + Y2
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Vector Properties

r1 + Y1
T2 -+ Y9
T3 + Y3

L1 — Yq
L2 — Y9
L3 — Y3
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Vector Properties

r1 + Y1
— | T2 + Y2 x4
T3 + Y3 ¢ | zo
L1 — Y1 L3
— L2 — Y2
L3 — Y3

Cl1
— | CIL9
Cl3

(c is a scalar)
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Vector Independence

e Two vectors are linearly dependent iff there are scalars ¢y, ¢,:

a1 bl 0
c1 |lao| +¢co |by| = |0
a3 bg 0

e ...except for ¢; = ¢, = 0 (which always gives the zero vector)
e Otherwise the vectors are independent
e Definition applies to any number of vectors and constants

e Note: a = 0 is used to indicate a vector of zeros
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e \What constants solve this equation?

1 4
ci1 |2] +co || =
3 0
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Vector (In)dependence Examples

e \ectors are dependent if they are colinear

e Non-colinear vectors can also be dependent
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Spaces and Spans

e [ he entirety of 1-dimensional space is called R!

e 2-dimensional space is called R’

® and so on
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e WO vectors of size 2 span R? iff they are independent

e [hree vectors of size 3 span R iff they are independent

e If the num of independent vectors is less than the vector dimension, they span
a (hyper)plane within the larger space

e EXx: a and b above span a 2-D plane In R’
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Basis of a Space

e A set of independent vectors that span a space are called a basis for that
space

e The simplest bases for R? and R’ are known as the Standard Basis:

e [hese are not the only bases for these spaces

R? R’

1 0 0
= e i=10]j=|1|k= |0
0 0 1



Span Video



https://www.youtube.com/watch?v=k7RM-ot2NWY

Span Video



https://www.youtube.com/watch?v=k7RM-ot2NWY

Matrix Multiplication
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Quick reminder: Dot Product
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Quick reminder: Dot Product

a-b=a'b=aby + asbs... + a,b,

(vectors need to be the same length)



Matrix-Vector Multiplication

1 4 7
A= 12 5 8| x=
3 06 9

Ax =7
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e The “inner” sizes of the matrices must match
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Matrix Multiplication Rules

e Matrix multiplication is not commutative: Ax # xA

e The “inner” sizes of the matrices must match

1 4
1 51 |2 5
2 6 5 6
4 rows 9 7 3y0
4 8
2 columns
“4x2 matrix”

7 9 11

8 10 12
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|

1 4 7 10
X2 51 18 11
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Matrix Multiplication Rules

e Matrix multiplication is not commutative: Ax # xA
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Matrix Multiplication Rules

e Matrix multiplication is not commutative: Ax # xA

e The “inner” sizes of the matrices must match

1 4
1 51 |2 5
2 6 5 6
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4 8
2 columns
“4x2 matrix”
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Matrix Multiplication Rules

e Matrix multiplication is not commutative: Ax # xA

e The “inner” sizes of the matrices must match

1 4
1 51 |2 5
2 6 5 6
4 rows 9 7 3y0
4 8
2 columns
“4x2 matrix”

7 10

& 11

9 12
3X2
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Matrix-Vector Multiplication

The Traditional Way

L 4 71 |1
2 o gl |[1] =
3 0 9|1
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15
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Matrix-Vector Multiplication

The Traditional Way

3 69 |1

12
15

13
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Matrix-Vector Multiplication

e Alternative way to think about this multiplication
e The matrix consists of column vectors

e [he vector provides the constants for a linear combination of the columns

I 4 7 1 4 ( 12
2 o 3| |[1]| — 1|2+ 1|9+ 1|38] = (15
3 6 9| |1 3 0 9 13
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Matrix-Vector Multiplication

e What is the significance of this alternate view?
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Matrix-Vector Multiplication

e What is the significance of this alternate view?

e Forall Ax = b, b is expressed as a linear combination of A’s columns, and
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Matrix-Vector Multiplication

e What is the significance of this alternate view?

e Forall Ax = b, b is expressed as a linear combination of A’s columns, and
SO...

e ...b is always in the span of A’s columns

e This is called the Column Space of A, C(A)

1 4 7 | 1 4 7 12
2 5 & || — 1|2+ 1|0 + 1[3] = [15
3 6 9 | 3 0 9 18
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Space of this matrix?
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Column Space

e What can you tell about the Column
Space of this matrix?

e 2 independent columns 1 4

e C(A) spans a 2D plane in R’

e Ax spans a 2D plane in R’ 2 5

third column not independent of first two

O
(
Y
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Column Space

e What can you tell about the Column
Space of this matrix? What is the
size of “input” vector x?

® 2 independent columns

e X IS length 4
e C(A) spans a 2D plane in R*

e Ax spans a 2D plane in R*
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Matrix Rank

e The number of independent columns in a matrix is called the rank

e [he rank determines the dimension of the column space
e Rank 1: line
e Rank 2: plane
e Rank 3: 3D hyperplane

® efc.

e MxN matrix can be considered a function from R to RM

e However, the function’s range may not span R™ unless it is rank M

YA/ UNIVERSITY of WASHINGTON 29
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ldentity Matrix

e The Identity Matrix / always returns the same vector/matrix it’'s multiplied
with
ecg. Ix=xand/A=A

e \Where have we seen these columns before?

I 0O
0 1

. J

I 0
0 1
0 0
L

> — O O
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ldentity Matrix as a Basis

e Vectors can be viewed as being composed of the Standard Basis
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ldentity Matrix as a Basis

e Vectors can be viewed as being composed of the Standard Basis
vectors

e A vector is a linear combination of this basis
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| Inear Transformation

e Multiplying by a matrix converts a vector to a
new basis

e [he basis consists of the matrix columns
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e Multiplying by a matrix converts a vector to a
new basis

e [he basis consists of the matrix columns
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e Multiplying by a matrix converts a vector to a
new basis
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e Multiplying by a matrix converts a vector to a
new basis

e [he basis consists of the matrix columns
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e Multiplying by a matrix converts a vector to a
new basis

e [he basis consists of the matrix columns
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| Inear Transformation

e Multiplying by a matrix converts a vector to a
new basis

e [he basis consists of the matrix columns

e [his is called a linear transformation
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| Inear Transformation

e Multiplying by a matrix converts a vector to a
new basis

e [he basis consists of the matrix columns
e [his is called a linear transformation

e [his matrix rotates the space by 45° and
stretches it
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Linear Transformation
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Visualizing Linear Transformations

—Linear
Sf OT1Mm at 10N



https://www.youtube.com/watch?v=kYB8IZa5AuE

Visualizing Linear Transformations

—Linear
Sf OT1Mm at 10N



https://www.youtube.com/watch?v=kYB8IZa5AuE

Why do we need this?

NNNNNNNNNNNNNNNNNNNNNN



Why do we need this?

e Linear transformations (aka matrix multiplications) are the basic operation
of neural networks



Why do we need this?

e Linear transformations (aka matrix multiplications) are the basic operation
of neural networks

e A feedforward NN layer:



Why do we need this?

e Linear transformations (aka matrix multiplications) are the basic operation
of neural networks

e A feedforward NN layer:

e [akes in an input vector



Why do we need this?

e Linear transformations (aka matrix multiplications) are the basic operation
of neural networks

e A feedforward NN layer:
e [akes in an input vector

e Applies a linear transformation

YA/ UNIVERSITY of WASHINGTON 36



Why do we need this?
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e Adds a non-linear activation function (we’ll cover this later)
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Why do we need this?

e Linear transformations (aka matrix multiplications) are the basic operation
of neural networks

e A feedforward NN layer:
e [akes in an input vector
e Applies a linear transformation

e Adds a non-linear activation function (we’ll cover this later)

e TLDR: Neural Nets transform vectors and vector spaces
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Extra Credit Opportunity

e There will not be a homework exclusively on Linear Algebra


https://youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
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e | might sneak in a few questions in a later assignment

e For 10pts extra credit:

e Watch some or all of this great Linear Algebra youtube series
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Extra Credit Opportunity

e There will not be a homework exclusively on Linear Algebra

e | might sneak in a few questions in a later assignment

e For 10pts extra credit:

e Watch some or all of this great Linear Algebra youtube series

e Post a question / musing on the Canvas Discussion thread titled “Linear
Algebra Youtube Discussion”

® You can also also reply to another student’s question for credit
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