Neural Network Introduction

Ling 575j: Deep Learning for NLP C.M. Downey Spring 2023

Plan for Today

- Last time:
 - Prediction-based word vectors
 - Skip-gram with negative sampling [model + loss]
- Today: intro to feed-forward neural networks
 - Basic computation + expressive power
 - Multilayer perceptrons
 - Mini-batches
 - Hyper-parameters and regularization

Computation: Basic Example

Artificial Neuron

$$a = f(a_0 \cdot w_0 + a_1 \cdot w_1 + a_2 \cdot w_2)$$

Activation Function: Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

p q a

þ	q	a
1	1	1

p	q	a
1	1	1
1	0	0

p	q	a
1	1	1
1	0	0
0	1	0

p	q	a
1	1	1
1	0	0
0	1	0
0	0	0

Computing 'and'

The XOR problem

The XOR problem

Computing XOR

Computing XOR

Exercise: show that NAND behaves as described.

Computing XOR

Key Ideas

- Hidden layers compute high-level / abstract features of the input
 - Via training, will *learn which features* are helpful for a given task
 - Caveat: doesn't always learn much more than shallow features
- Doing so increases the expressive power of a neural network
 - Strictly more functions can be computed with hidden layers than without

• Neural networks with one hidden layer are universal function approximators

- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.

- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.
- Generalizations (diff activation functions, less bounded, etc.) exist.

- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
 - Size of the hidden layer is exponential in m
 - How does one find/learn such a good approximation?

- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
 - Size of the hidden layer is exponential in m
 - How does one find/learn such a good approximation?
- Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
 - Size of the hidden layer is exponential in m
 - How does one find/learn such a good approximation?
- Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html
- See also GBC 6.4.1 for more references, generalizations, discussion

Feed-forward networks aka Multi-layer perceptrons (MLP)

$$a_{\text{or}} = \sigma \left(\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + b^{\text{or}} \right)$$

$$a_{\text{or}} = \sigma \left(\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + b^{\text{or}} \right)$$

$$a_{\text{nand}} = \sigma \left(\begin{bmatrix} w_p^{\text{nand}} & w_q^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + b^{\text{nand}} \right)$$

$$a_{\text{or}} = \sigma \left(\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + b^{\text{or}} \right)$$

$$a_{\text{nand}} = \sigma \left(\begin{bmatrix} w_p^{\text{nand}} & w_q^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + b^{\text{nand}} \right)$$

$$\begin{bmatrix} a_{\text{or}} \\ a_{\text{nand}} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \\ w_p^{\text{nand}} & w_q^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix} \right)$$

$$a_{\text{or}} = \sigma \left(\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + b^{\text{or}} \right)$$

$$a_{\text{nand}} = \sigma \left(\begin{bmatrix} w_p & w_q \\ w_p & w_q \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + b^{\text{nand}} \right)$$

$$\begin{bmatrix} a_{\text{or}} \\ a_{\text{nand}} \end{bmatrix} = \sigma \begin{pmatrix} \begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \\ w_p^{\text{nand}} & w_q^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix}$$

$$a_{\text{and}} = \sigma \left(\begin{bmatrix} w \text{ and } w \text{ and } \\ w \text{ or } w \text{ nand} \end{bmatrix} \begin{bmatrix} a \text{ or } \\ a \text{ nand} \end{bmatrix} + b^{\text{and}} \right)$$

$$a_{\text{and}} = \sigma \left[\begin{bmatrix} w_{\text{or}}^{\text{and}} & w_{\text{nand}}^{\text{and}} \end{bmatrix} \sigma \left(\begin{bmatrix} w_{p}^{\text{or}} & w_{q}^{\text{or}} \\ w_{p}^{\text{nand}} & w_{q}^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_{p} \\ a_{q} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix} \right) + b^{\text{and}} \right]$$

Generalizing

$$a_{\text{and}} = \sigma \left(\begin{bmatrix} w_{\text{or}}^{\text{and}} & w_{\text{nand}}^{\text{and}} \end{bmatrix} \sigma \left(\begin{bmatrix} w_{p}^{\text{or}} & w_{q}^{\text{or}} \\ w_{p}^{\text{nand}} & w_{q}^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_{p} \\ a_{q} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix} \right) + b^{\text{and}} \right)$$

Generalizing

$$a_{\text{and}} = \sigma \left(\begin{bmatrix} w_{\text{or}} & w_{\text{nand}} \\ w_{\text{or}} & w_{\text{nand}} \end{bmatrix} \sigma \left(\begin{bmatrix} w_{p}^{\text{or}} & w_{q}^{\text{or}} \\ w_{p}^{\text{nand}} & w_{q}^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_{p} \\ a_{q} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix} \right) + b^{\text{and}} \right)$$

$$\hat{y} = f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right)$$

Generalizing

$$a_{\text{and}} = \sigma \left[\begin{bmatrix} w_{\text{or}}^{\text{and}} & w_{\text{nand}}^{\text{and}} \end{bmatrix} \sigma \left(\begin{bmatrix} w_{p}^{\text{or}} & w_{q}^{\text{or}} \\ w_{p}^{\text{nand}} & w_{q}^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_{p} \\ a_{q} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix} \right) + b^{\text{and}}$$

$$\hat{y} = f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right)$$

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

Some terminology

- Our XOR network is a feed-forward neural network with one hidden layer
 - Aka a multi-layer perceptron (MLP)
- Input nodes: 2; output nodes: 1
- Activation function: sigmoid

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_0} \end{bmatrix}$$
 Shape: $(n_0, 1)$

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_0} \end{bmatrix} \text{ Shape: } (n_0, 1)$$

$$W^1 = \begin{bmatrix} w_{00} & w_{10} & \cdots & w_{0n_0} \\ w_{10} & w_{11} & \cdots & w_{1n_0} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_10} & w_{n_11} & \cdots & w_{n_1n_0} \end{bmatrix}$$

$$Shape: (n_1, n_0)$$

$$n_0: \text{ dimension of input (layer 0)}$$

$$n_1: \text{ output dimension of layer 1}$$

 n_1 : output dimension of layer 1

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_0} \end{bmatrix} \text{ Shape: } (n_0,1) \\ \text{Shape: } (n_1,n_0) \\ n_0 \text{: dimension of input (layer 0)} \\ n_1 \text{: output dimension of layer 1} \\ \end{bmatrix} b^1 = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n_1} \end{bmatrix} \text{ Shape: } (n_1,1)$$

 n_1 : output dimension of layer 1

$$b^1 = \left| egin{array}{c} b_0 \\ b_1 \\ \vdots \\ b_{n_1} \end{array} \right|$$
 Shape: $(n_1,1)$

Parameters of an MLP

- Weights and biases
 - For each layer $l: n_l(n_{l-1} + 1)$
 - $n_l n_{l-1}$ weights; n_l biases
- With *n* hidden layers (considering the output as a hidden layer):

$$\sum_{i=1}^{n} n_i (n_{i-1} + 1)$$

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers
- For each hidden layer:
 - Size
 - Activation function

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers
- For each hidden layer:
 - Size
 - Activation function
- Others: initialization, regularization (and associated values), learning rate / training, ...

The Deep in Deep Learning

- The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function
- Empirical drawbacks: Super-exponentially many neurons; hard to discover
- "Deep and narrow" >> "Shallow and wide" (some theoretical analysis)
 - In principle allows hierarchical features to be learned
 - More well-behaved w/r/t optimization

The Deep in Deep Learning

 The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function

- "Deep and I
 - In principle

discover

<u>sis</u>)

More well-behaved w/r/t optimization

The Deep in Deep Learning

 The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function

Parts (layers mixed4b & mixed4c)

- Empirical di
- "Deep and I
 - In principle

Edges (layer conv2d0)

Objects (layers mixed4d & mixed4e)

discover

<u>sis</u>)

More well-behaved w/r/t optimization

Textures (layer mixed3a)

Patterns (layer mixed4a)

source

Activation Functions

- Note: non-linear activation functions are essential
- MLP: linear transformation, followed by a point-wise non-linearity, repeated several times over
- Without the non-linearity, would just have several linear transformations
 - Composition of linear transformations is also linear!

Activation Functions

- Note: non-linear activation functions are essential
- MLP: linear transformation, followed by a point-wise non-linearity, repeated several times over
- Without the non-linearity, would just have several linear transformations
 - Composition of linear transformations is also linear!

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

 Recall: XOR was not computable by a single neuron because the latter can only compute *linearly separable* functions

- Recall: XOR was not computable by a single neuron because the latter can only compute *linearly separable* functions
- One perspective: integrating extracted features

- Recall: XOR was not computable by a single neuron because the latter can only compute *linearly separable* functions
- One perspective: integrating extracted features
- An equivalent perspective:
 - Transforming the input space (<u>source</u>; p. 169)
 - This is a *non-linear* transformation
 - Space folding intuition more generally (also GBC sec 6.4.1)

- Recall: XOR was not computable by a single neuron because the latter can only compute *linearly separable* functions
- One perspective: integrating extracted features
- An equivalent perspective:
 - Transforming the input space (<u>source</u>; p. 169)
 - This is a *non-linear* transformation
 - Space folding intuition more generally (also GBC sec 6.4.1)

sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

tanh

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

tanh

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

Problem: derivative "saturates" (nearly 0) everywhere except near origin

sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

tanh

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

Problem: derivative "saturates" (nearly 0) everywhere except near origin

sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

tanh

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

- Use ReLU by default
- Generalizations:
 - Leaky
 - ELU
 - Softplus
 - ...

Activation Functions: Output Layer

- Depends on the task!
- Regression (continuous output(s)): none!
 - Just use final linear transformation
- Binary classification: sigmoid
 - Also for multi-label classification
- Multi-class classification: softmax
 - Terminology: the inputs to a softmax are called logits
 - [there are sometimes other uses of the term, so beware]

$$\operatorname{softmax}(x)_i = \frac{e^{x_i}}{\sum_{i} e^{x_j}}$$

Mini-batch computation

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_0} \end{bmatrix}$$
 Shape: $(n_0, 1)$

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_0} \end{bmatrix} \text{ Shape: } (n_0, 1)$$

$$W^1 = \begin{bmatrix} w_{00} & w_{10} & \cdots & w_{0n_0} \\ w_{10} & w_{11} & \cdots & w_{1n_0} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_10} & w_{n_11} & \cdots & w_{n_1n_0} \end{bmatrix}$$

$$Shape: (n_1, n_0)$$

$$n_0: \text{ dimension of input (layer 0)}$$

$$n_1: \text{ output dimension of layer 1}$$

 n_1 : output dimension of layer 1

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_0} \end{bmatrix} \text{ Shape: } (n_0,1) \\ & \begin{bmatrix} w_{00} & w_{10} & \cdots & w_{0n_0} \\ w_{10} & w_{11} & \cdots & w_{1n_0} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_10} & w_{n_11} & \cdots & w_{n_1n_0} \end{bmatrix} \\ & Shape: (n_1,n_0) \\ & n_0: \text{ dimension of input (layer 0)} \\ & n_1: \text{ output dimension of layer 1} \\ & b^1 = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n_1} \end{bmatrix} \text{ Shape: } (n_1,1)$$

 n_1 : output dimension of layer 1

$$b^1 = \left| egin{array}{c} b_0 \\ b_1 \\ drain \\ b_{n_1} \end{array} \right|$$
 Shape: $(n_1,1)$

Mini-batch Gradient Descent (from lecture 2)

```
initialize parameters / build model
for each epoch:
 data = shuffle(data)
 batches = make batches(data)
 for each batch in batches:
  outputs = model(batch)
  loss = loss fn(outputs, true outputs)
  compute gradients
  update parameters
```

Computing with Mini-batches

Bad idea:

```
for each batch in batches:
  for each datum in batch:
    outputs = model(datum)
    loss = loss_fn(outputs, true_outputs)
    compute gradients
    update parameters
```

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 X + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 X + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^k \\ x_1^0 & x_1^1 & \dots & x_1^k \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_0}^0 & x_{n_0}^1 & \dots & x_{n_0}^k \end{bmatrix}$$

Shape: (n_0, k) k: batch_size

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 X + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^k \\ x_1^0 & x_1^1 & \dots & x_1^k \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_0}^0 & x_{n_0}^1 & \dots & x_{n_0}^k \end{bmatrix} \quad W^1 = \begin{bmatrix} w_{00} & w_{01} & \dots & w_{0n_1} \\ w_{10} & w_{11} & \dots & w_{1n_1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_00} & w_{n_01} & \dots & w_{n_0n_1} \end{bmatrix}$$

Shape: (n_0, k) k: batch_size

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 X + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^k \\ x_1^0 & x_1^1 & \dots & x_1^k \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_0}^0 & x_{n_0}^1 & \dots & x_{n_0}^k \end{bmatrix}$$

Shape: (n_0, k)

k: batch_size

 $X = \begin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^k \\ x_1^0 & x_1^1 & \dots & x_1^k \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_0}^0 & x_{n_0}^1 & \dots & x_{n_0}^k \end{bmatrix} \quad W^1 = \begin{bmatrix} w_{00} & w_{01} & \cdots & w_{0n_1} \\ w_{10} & w_{11} & \cdots & w_{1n_1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_00} & w_{n_01} & \cdots & w_{n_0n_1} \end{bmatrix}$

Shape: (n_1, n_0)

 n_0 : dimension of input (layer 0)

 n_1 : output dimension of layer 1

$$\hat{y} = f_n \left(W^n \cdot f_{n-1} \left(\cdots f_2 \left(W^2 \cdot f_1 \left(W^1 X + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^k \\ x_1^0 & x_1^1 & \dots & x_1^k \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_0}^0 & x_{n_0}^1 & \dots & x_{n_0}^k \end{bmatrix}$$

Shape:
$$(n_0, k)$$
 k: batch_size

$$X = \begin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^k \\ x_1^0 & x_1^1 & \dots & x_1^k \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_0}^0 & x_{n_0}^1 & \dots & x_{n_0}^k \end{bmatrix} \quad W^1 = \begin{bmatrix} w_{00} & w_{01} & \dots & w_{0n_1} \\ w_{10} & w_{11} & \dots & w_{1n_1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_00} & w_{n_01} & \dots & w_{n_0n_1} \end{bmatrix} \qquad b^1 = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n_1} \end{bmatrix}$$

Shape:
$$(n_1, n_0)$$

$$n_0$$
: dimension of input (layer 0) n_1 : output dimension of layer 1 Add

$$b^1 = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n_1} \end{bmatrix}$$

Shape: $(n_1, 1)$ Added to each col. of W^1X

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/ tensors to be a batch size
 - Produce a sequence of representations, for each item in the batch
 - e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/ tensors to be a batch size
 - Produce a sequence of representations, for each item in the batch
 - e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)
- In principle, can be higher than 2-dimensional
 - Images: (batch_size, width, height, 3)
 - Sequences: (batch_size, seq_len, representation_size)

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/ tensors to be a batch size
 - Produce a sequence of representations, for each item in the batch
 - e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)
- In principle, can be higher than 2-dimensional
 - Images: (batch_size, width, height, 3)
 - Sequences: (batch_size, seq_len, representation_size)
- Two comments:
 - In your code, annotate every tensor with a comment saying intended shape
 - When debugging, look at shapes early on!!

 Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)
- The last dimension of the input should match the first dimension of the weights

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)
- The last dimension of the input should match the first dimension of the weights
- You can think of it as these libraries preferring $x^T W^T$ to Wx

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)
- The last dimension of the input should match the first dimension of the weights
- You can think of it as these libraries preferring x^TW^T to Wx
 - (The result of this multiplication is the same, just transposed)

Next Time

- Further abstraction: computation graph
- Backpropagation algorithm for computing gradients
 - Using forward/backward API for nodes in a comp graph