Neural Network Introduction

Ling 575j: Deep Learning for NLP
C.M. Downey

Spring 2023

Plan for Today

- Last time:
- Prediction-based word vectors
- Skip-gram with negative sampling [model + loss]
- Today: intro to feed-forward neural networks
- Basic computation + expressive power
- Multilayer perceptrons
- Mini-batches
- Hyper-parameters and regularization

Computation: Basic Example

Artificial Neuron

https://github.com/shanest/nn-tutorial

Activation Function: Sigmoid

$$
\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}
$$

Computing a Boolean function

Computing a Boolean function

Computing a Boolean function

Computing a Boolean function

p	q	a
1	1	1
1	0	0

Computing a Boolean function

p	q	a
1	1	1
1	0	0
0	1	0

Computing a Boolean function

p	q	a
1	1	1
1	0	0
0	1	0
0	0	0

Computing 'and'

The XOR problem

The XOR problem

XOR is not linearly separable

Computing XOR

OR

Computing XOR

 OR

Exercise: show that NAND behaves as described.

Computing XOR

Key Ideas

- Hidden layers compute high-level / abstract features of the input
- Via training, will learn which features are helpful for a given task
- Caveat: doesn't always learn much more than shallow features
- Doing so increases the expressive power of a neural network
- Strictly more functions can be computed with hidden layers than without

Expressive Power

Expressive Power

- Neural networks with one hidden layer are universal function approximators

Expressive Power

- Neural networks with one hidden layer are universal function approximators
- Let $f:[0,1]^{m} \rightarrow \mathbb{R}$ be continuous and $\epsilon>0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x})-g(\mathbf{x})|<\epsilon$ for all $\mathbf{x} \in[0,1]^{m}$.

Expressive Power

- Neural networks with one hidden layer are universal function approximators
- Let $f:[0,1]^{m} \rightarrow \mathbb{R}$ be continuous and $\epsilon>0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x})-g(\mathbf{x})|<\epsilon$ for all $\mathbf{x} \in[0,1]^{m}$.
- Generalizations (diff activation functions, less bounded, etc.) exist.

Expressive Power

- Neural networks with one hidden layer are universal function approximators
- Let $f:[0,1]^{m} \rightarrow \mathbb{R}$ be continuous and $\epsilon>0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x})-g(\mathbf{x})|<\epsilon$ for all $\mathbf{x} \in[0,1]^{m}$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
- Size of the hidden layer is exponential in m
- How does one find/learn such a good approximation?

Expressive Power

- Neural networks with one hidden layer are universal function approximators
- Let $f:[0,1]^{m} \rightarrow \mathbb{R}$ be continuous and $\epsilon>0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x})-g(\mathbf{x})|<\epsilon$ for all $\mathbf{x} \in[0,1]^{m}$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
- Size of the hidden layer is exponential in m
- How does one find/learn such a good approximation?
- Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

Expressive Power

- Neural networks with one hidden layer are universal function approximators
- Let $f:[0,1]^{m} \rightarrow \mathbb{R}$ be continuous and $\epsilon>0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x})-g(\mathbf{x})|<\epsilon$ for all $\mathbf{x} \in[0,1]^{m}$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
- Size of the hidden layer is exponential in m
- How does one find/learn such a good approximation?
- Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html
- See also GBC 6.4.1 for more references, generalizations, discussion

Feed-forward networks aka Multi-layer perceptrons (MLP)

XOR Network

Generalizing

$$
a_{\text {and }}=\sigma\left(\left[\begin{array}{ll}
w_{\text {ar }}^{\text {and }} & w_{\text {nand }}^{\text {and }}
\end{array}\right] \sigma\left(\left[\begin{array}{cc}
w_{p}^{\text {or }} & w_{q}^{\text {or }} \\
w_{p}^{\text {nand }} & w_{q}^{\text {nand }}
\end{array}\right]\left[\begin{array}{l}
a_{p} \\
a_{q}
\end{array}\right]+\left[\begin{array}{c}
b^{\text {or }} \\
b^{\text {nand }}
\end{array}\right]\right)+b^{\text {and }}\right)
$$

Generalizing

$$
\begin{gathered}
a_{\text {and }}=\sigma\left(\left[\begin{array}{cc}
w_{\text {ard }}^{\text {and }} & w_{\text {Rand }}^{\text {and }}
\end{array}\right] \sigma\left(\left[\begin{array}{cc}
w_{p}^{\text {or }} & w_{q}^{\text {or }} \\
w_{p}^{\text {rand }} & w_{q}^{\text {rand }}
\end{array}\right]\left[\begin{array}{c}
a_{p} \\
a_{q}
\end{array}\right]+\left[\begin{array}{c}
b^{\text {or }} \\
b^{\text {rand }} d
\end{array}\right]+b^{\text {and }}\right)\right. \\
\hat{y}=f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right)
\end{gathered}
$$

Generalizing

$$
\begin{gathered}
a_{\text {and }}=\sigma\left(\left[\begin{array}{cc}
w_{\text {or }}^{\text {and }} & w_{\text {and }}^{\text {and }}
\end{array}\right] \sigma\left(\left[\begin{array}{cc}
w_{p}^{\text {or }} & w_{q}^{\text {or }} \\
w_{p}^{\text {nand }} & w_{q}^{\text {and }}
\end{array}\right]\left[\begin{array}{c}
a_{p} \\
a_{q}
\end{array}\right]+\left[\begin{array}{c}
b^{\text {or }} \\
b^{\text {nand }}
\end{array}\right]\right)+b^{\text {and }}\right) \\
\hat{y}=f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \\
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
\end{gathered}
$$

Some terminology

- Our XOR network is a feed-forward neural network with one hidden layer
- Aka a multi-layer perceptron (MLP)
- Input nodes: 2; output nodes: 1
- Activation function: sigmoid

General MLP

General MLP

General MLP

General MLP

General MLP

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

General MLP

$$
\begin{gathered}
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right) \\
x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n_{0}}
\end{array}\right] \text { Shape: }\left(n_{0}, 1\right)
\end{gathered}
$$

General MLP

$$
\begin{gathered}
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right) \\
\left.x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n_{0}}
\end{array}\right] \text { Shape: }\left(n_{0}, 1\right) \quad \begin{array}{cccc}
w_{00} & w_{10} & \cdots & w_{0 n_{0}} \\
w_{10} & w_{11} & \cdots & w_{1 n_{0}} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{1} 0} & w_{n_{1} 1} & \cdots & w_{n_{1} n_{0}}
\end{array}\right] \\
\text { Shape: }\left(n_{1}, n_{0}\right) \\
n_{0}: \text { dimension of input (layer 0) } \\
n_{1}: \text { output dimension of layer 1 }
\end{gathered}
$$

General MLP

$$
\left.\begin{array}{c}
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right) \\
\left.x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n_{0}}
\end{array}\right] \text { Shape: }\left(n_{0}, 1\right) \quad \begin{array}{cccc}
w_{00} & w_{10} & \cdots & w_{0 n_{0}} \\
w_{10} & w_{11} & \cdots & w_{1 n_{0}} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{1} 0} & w_{n_{1} 1} & \cdots & w_{n_{1} n_{0}}
\end{array}\right] \\
\begin{array}{c}
\text { Shape: }\left(n_{1}, n_{0}\right)
\end{array} \\
n^{1}=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
n_{1}: \text { dimension of input (layer 0) }
\end{array}\right. \\
\vdots \\
b_{n_{1}}
\end{array}\right] \text { Shape: }\left(n_{1}, 1\right)
$$

Parameters of an MLP

- Weights and biases
- For each layer $l: n_{l}\left(n_{l-1}+1\right)$
- $n_{l} n_{l-1}$ weights; n_{l} biases
- With n hidden layers (considering the output as a hidden layer):

$$
\sum_{i=1}^{n} n_{i}\left(n_{i-1}+1\right)
$$

Hyper-parameters of an MLP

Hyper-parameters of an MLP

- Input size, output size
- Usually fixed by your problem / dataset
- Input: image size, vocab size; number of "raw" features in general
- Output: 1 for binary classification or simple regression, number of labels for classification, ...

Hyper-parameters of an MLP

- Input size, output size
- Usually fixed by your problem / dataset
- Input: image size, vocab size; number of "raw" features in general
- Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers

Hyper-parameters of an MLP

- Input size, output size
- Usually fixed by your problem / dataset
- Input: image size, vocab size; number of "raw" features in general
- Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers
- For each hidden layer:
- Size
- Activation function

Hyper-parameters of an MLP

- Input size, output size
- Usually fixed by your problem / dataset
- Input: image size, vocab size; number of "raw" features in general
- Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers
- For each hidden layer:
- Size
- Activation function
- Others: initialization, regularization (and associated values), learning rate / training, ...

The Deep in Deep Learning

- The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function
- Empirical drawbacks: Super-exponentially many neurons; hard to discover
- "Deep and narrow" >> "Shallow and wide" (some theoretical analysis)
- In principle allows hierarchical features to be learned
- More well-behaved w/r/t optimization

The Deep in Deep Learning

- The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function
- Empirical di
- "Deep and ।
- In principle

- More well-behaved w/r/t optimization

The Deep in Deep Learning

- The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function
- Empirical dı
- "Deep and ।
- In principle

- Mnre well-hehaved w/r/t ontimization

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b \& mixed4c)

source

Activation Functions

- Note: non-linear activation functions are essential
- MLP: linear transformation, followed by a point-wise non-linearity, repeated several times over
- Without the non-linearity, would just have several linear transformations
- Composition of linear transformations is also linear!

Activation Functions

- Note: non-linear activation functions are essential
- MLP: linear transformation, followed by a point-wise non-linearity, repeated several times over
- Without the non-linearity, would just have several linear transformations
- Composition of linear transformations is also linear!

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

Non-linearity, cont.

Non-linearity, cont.

- Recall: XOR was not computable by a single neuron because the latter can only compute linearly separable functions

Non-linearity, cont.

- Recall: XOR was not computable by a single neuron because the latter can only compute linearly separable functions
- One perspective: integrating extracted features

Non-linearity, cont.

- Recall: XOR was not computable by a single neuron because the latter can only compute linearly separable functions
- One perspective: integrating extracted features
- An equivalent perspective:
- Transforming the input space (source; p. 169)
- This is a non-linear transformation
- Space folding intuition more generally (also GBC sec 6.4.1)

Non-linearity, cont.

- Recall: XOR was not computable by a single neuron because the latter can only compute linearly separable functions
- One perspective: integrating extracted features
- An equivalent perspective:
- Transforming the input space (source; p. 169)
- This is a non-linear transformation
- Space folding intuition more generally (also GBC sec 6.4.1)

Learned \boldsymbol{h} space

Activation Functions: Hidden Layer

sigmoid

$\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}$

Activation Functions: Hidden Layer

sigmoid

$\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}$
tanh

$\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=2 \sigma(2 x)-1$

Activation Functions: Hidden Layer

tanh

$\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=2 \sigma(2 x)-1$

Problem: derivative "saturates" (nearly 0) everywhere except near origin

Activation Functions: Hidden Layer

$$
\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}
$$

$$
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=2 \sigma(2 x)-1
$$

Problem: derivative "saturates" (nearly 0) everywhere except near origin

Activation Functions: Hidden Layer

sigmoid

$$
\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}
$$

tanh

$$
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=2 \sigma(2 x)-1
$$

- Use ReLU by default
- Generalizations:
- Leaky
- ELU
- Softplus

Problem: derivative "saturates" (nearly 0) everywhere except near origin

Activation Functions: Output Layer

- Depends on the task!
- Regression (continuous output(s)): none!
- Just use final linear transformation
- Binary classification: sigmoid

$$
\operatorname{softmax}(x)_{i}=\frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}}
$$

- Also for multi-label classification
- Multi-class classification: softmax
- Terminology: the inputs to a softmax are called logits
- [there are sometimes other uses of the term, so beware]

Mini-batch computation

Computing with a Single Input

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

Computing with a Single Input

$$
\begin{gathered}
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right) \\
x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n_{0}}
\end{array}\right] \text { Shape: }\left(n_{0}, 1\right)
\end{gathered}
$$

Computing with a Single Input

$$
\begin{gathered}
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right) \\
\left.x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n_{0}}
\end{array}\right] \text { Shape: }\left(n_{0}, 1\right) \quad \begin{array}{cccc}
w_{00} & w_{10} & \cdots & w_{0 n_{0}} \\
w_{10} & w_{11} & \cdots & w_{1 n_{0}} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{1} 0} & w_{n_{1} 1} & \cdots & w_{n_{1} n_{0}}
\end{array}\right] \\
\text { Shape: }\left(n_{1}, n_{0}\right) \\
n_{0}: \text { dimension of input (layer 0) } \\
n_{1}: \text { output dimension of layer 1 }
\end{gathered}
$$

Computing with a Single Input

$$
\begin{aligned}
& \hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right) \\
& {\left[\begin{array}{c}
x_{0} \\
x_{1}
\end{array}\right] W^{1}=\left[\begin{array}{cccc}
w_{00} & w_{10} & \cdots & w_{0 n_{0}} \\
w_{10} & w_{11} & \cdots & w_{1 n_{0}} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{1} 0} & w_{n_{1} 1} & \cdots & w_{n_{1} n_{0}}
\end{array}\right]} \\
& \text { Shape: }\left(n_{1}, n_{0}\right) \\
& n_{0} \text { : dimension of input (layer } 0 \text {) } \\
& n_{1} \text { : output dimension of layer } 1 \\
& b^{1}=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n_{1}}
\end{array}\right] \text { Shape: }\left(n_{1}, 1\right)
\end{aligned}
$$

Mini-batch Gradient Descent (from lecture 2)

```
initialize parameters / build model
```

for each epoch:

```
data = shuffle(data)
batches = make_batches(data)
```

for each batch in batches:

```
outputs = model(batch)
loss = loss_fn(outputs, true_outputs)
compute gradients
update parameters
```


Computing with Mini-batches

- Bad idea:

```
for each batch in batches:
    for each datum in batch:
        outputs = model(datum)
        loss = loss_fn(outputs, true_outputs)
        compute gradients
    update parameters
```


Computing with a Batch of Inputs

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} X+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

Computing with a Batch of Inputs

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} X+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

$$
X=\left[\begin{array}{cccc}
x_{0}^{0} & x_{0}^{1} & \ldots & x_{0}^{k} \\
x_{1}^{0} & x_{1}^{1} & \ldots & x_{1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n_{0}}^{0} & x_{n_{0}}^{1} & \ldots & x_{n_{0}}^{k}
\end{array}\right]
$$

Shape: $\left(n_{0}, k\right)$
k: batch_size

Computing with a Batch of Inputs

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} X+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

$$
X=\left[\begin{array}{cccc}
x_{0}^{0} & x_{0}^{1} & \cdots & x_{0}^{k} \\
x_{1}^{0} & x_{1}^{1} & \cdots & x_{1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n_{0}}^{0} & x_{n_{0}}^{1} & \cdots & x_{n_{0}}^{k}
\end{array}\right] \quad W^{1}=\left[\begin{array}{cccc}
w_{00} & w_{01} & \cdots & w_{0 n_{1}} \\
w_{10} & w_{11} & \cdots & w_{1 n_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
w_{n_{0} 0} & w_{n_{0} 1} & \cdots & w_{n_{0} n_{1}}
\end{array}\right]
$$

Shape: $\left(n_{0}, k\right)$
k: batch_size

Computing with a Batch of Inputs

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} X+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

$$
X=\left[\begin{array}{cccc}
x_{0}^{0} & x_{0}^{1} & \ldots & x_{0}^{k} \\
x_{1}^{0} & x_{1}^{1} & \ldots & x_{1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n_{0}}^{0} & x_{n_{0}}^{1} & \cdots & x_{n_{0}}^{k}
\end{array}\right] \quad W^{1}=\left[\begin{array}{cccc}
w_{00} & w_{01} & \cdots & w_{0 n_{1}} \\
w_{10} & w_{11} & \cdots & w_{1 n_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{0} 0} & w_{n_{0} 1} & \cdots & w_{n_{0} n_{1}}
\end{array}\right]
$$

Shape: $\left(n_{0}, k\right)$
Shape: $\left(n_{1}, n_{0}\right)$
k: batch_size

$$
\begin{aligned}
& n_{0} \text { : dimension of input (layer } 0 \text {) } \\
& n_{1} \text { : output dimension of layer } 1
\end{aligned}
$$

Computing with a Batch of Inputs

$$
\hat{y}=f_{n}\left(W^{n} \cdot f_{n-1}\left(\cdots f_{2}\left(W^{2} \cdot f_{1}\left(W^{1} X+b^{1}\right)+b^{2}\right) \cdots\right)+b^{n}\right)
$$

$$
X=\left[\begin{array}{cccc}
x_{0}^{0} & x_{0}^{1} & \ldots & x_{0}^{k} \\
x_{1}^{0} & x_{1}^{1} & \ldots & x_{1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n_{0}}^{0} & x_{n_{0}}^{1} & \ldots & x_{n_{0}}^{k}
\end{array}\right] \quad W^{1}=\left[\begin{array}{cccc}
w_{00} & w_{01} & \cdots & w_{0 n_{1}} \\
w_{10} & w_{11} & \cdots & w_{1 n_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{0} 0} & w_{n_{0} 1} & \cdots & w_{n_{0} n_{1}}
\end{array}\right] \quad b^{1}=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n_{1}}
\end{array}\right]
$$

Shape: $\left(n_{0}, k\right)$
k: batch_size

Shape: $\left(n_{1}, n_{0}\right)$
n_{0} : dimension of input (layer 0) n_{1} : output dimension of layer 1

Shape: $\left(n_{1}, 1\right)$
Added to each col. of $W^{1} X$

Note on mini-batches and shape

Note on mini-batches and shape

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/ tensors to be a batch size
- Produce a sequence of representations, for each item in the batch
- e.g. (batch_size, input_size) -> (batch_size, hidden_size) -> (batch_size, output_size)

Note on mini-batches and shape

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/ tensors to be a batch size
- Produce a sequence of representations, for each item in the batch
- e.g. (batch_size, input_size) $->$ (batch_size, hidden_size) $->$ (batch_size, output_size)
- In principle, can be higher than 2-dimensional
- Images: (batch_size, width, height, 3)
- Sequences: (batch_size, seq_len, representation_size)

Note on mini-batches and shape

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/ tensors to be a batch size
- Produce a sequence of representations, for each item in the batch
- e.g. (batch_size, input_size) $->$ (batch_size, hidden_size) $\rightarrow>$ (batch_size, output_size)
- In principle, can be higher than 2-dimensional
- Images: (batch_size, width, height, 3)
- Sequences: (batch_size, seq_len, representation_size)
- Two comments:
- In your code, annotate every tensor with a comment saying intended shape
- When debugging, look at shapes early on!!

Note on mini-batches and shape

Note on mini-batches and shape

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation

Note on mini-batches and shape

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)

Note on mini-batches and shape

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)
- The last dimension of the input should match the first dimension of the weights

Note on mini-batches and shape

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)
- The last dimension of the input should match the first dimension of the weights
- You can think of it as these libraries preferring $x^{T} W^{T}$ to $W x$

Note on mini-batches and shape

- Warning: PyTorch / NN libraries typically multiply matrices in the opposite direction as Linear Algebra notation
- e.g. the input to an MLP should be (batch_size, embedding_size) rather than (embedding_size, batch_size)
- The last dimension of the input should match the first dimension of the weights
- You can think of it as these libraries preferring $x^{T} W^{T}$ to $W x$
- (The result of this multiplication is the same, just transposed)

Next Time

- Further abstraction: computation graph
- Backpropagation algorithm for computing gradients
- Using forward/backward API for nodes in a comp graph

