# Computation Graphs + Backpropagation 

Ling 575j: Deep Learning for NLP
C.M. Downey

Spring 2023

## Announcements

- Patas is back!!
- ..kind of: Condor still doesn't work
- You should be able to access our dropbox, use our environment, etc
- Can run code without Condor for now, even though it's bad practice
- HW1 reference code made available in hw1/ref in our dropbox
- HW2's vocabulary.py is a symlink to vocabulary.py in hw1/ref
- You can symbolic link to it from your directory to use:
- `In -s /dropbox/22-23/575j/hw1/ref/vocabulary.py vocabulary.py


## Today's Plan

- Finish neural network intro (activation functions, batch computation, ...)
- Computation graph abstraction
- Backpropagation
- "Calculus on computation graphs"
- Forward/backward API


## Computation Graphs

## What is a computation graph?

- The "descriptive" language of deep learning frameworks
- e.g. TensorFlow, PyTorch
- Essentially, "parse trees" of mathematical expressions
- Captures dependence between
- Two types of computation:
- Forward: compute outputs given inputs
- Backward: compute gradients


## Computation Graph Example

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Forward Pass

- Compute output(s) given inputs
- Inputs: leaf nodes; need values
- Outputs: those with no children
- Forward computation:
- Loop over nodes in topological order (i.e. children after parents
- Compute value of a node given values of its parent nodes


## Computation Graph Example

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Computation Graph Example

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Computation Graph Example

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Computation Graph Example

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Computation Graph Example

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Nodes in a Graph

- Node: a Tensor value
- e.g. numpy ndarray; n-dimensional array of values
- Scalar, vector, matrix, ...
- Edge: function argument
- The value of a node is a function of the values of its parents
- For forward: node computes its value based on its parents' values


## SGNS as a Graph

$$
P(1 \mid w, c)=\sigma\left(E_{w} \cdot C_{c}\right)
$$



## Hidden Layer Graph



## Backpropagation

## So what?

- So far, this is just fancy re-writing of basic mathematical computation
- The real victory of the graph abstraction comes in computing derivatives
- Backpropagation:
- A dynamic programming algorithm on computation graphs that allows the gradient of an output to be computed with respect to every node in the graph


## Chain Rule (of Calculus)

$$
\frac{\partial}{\partial x} f(g(x))=\frac{\partial f}{\partial g} \frac{\partial g}{\partial x}
$$

## Computing Derivatives

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Computing Derivatives

$$
f(x ; a, b)=(a x+b)^{2}
$$



$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial(a x+b)} \frac{\partial(a x+b)}{\partial x} \\
& =2(a x+b) a \\
\frac{\partial f}{\partial a} & =2(a x+b) x \\
\frac{\partial f}{\partial b} & =2(a x+b)
\end{aligned}
$$

## Backpropagation Example

$$
f(x ; a, b)=(a x+b)^{2}
$$



## Backpropagation Example



## Backpropagation Example



## Backpropagation Example



## Backpropagation Example



## Backpropagation Example

$$
\begin{gathered}
\frac{\partial e}{\partial e}=1 \quad f(x ; a, b)=(a x+b)^{2} \\
e=d^{2}=25 \\
\frac{\partial e}{\partial c}=\frac{\partial e}{\partial d} \frac{\partial d}{\partial c}=10 \frac{\partial c+b}{\partial c}=10 \\
c=a x=b=2 d
\end{gathered}
$$

## Backpropagation Example

$$
\begin{aligned}
& \frac{\partial e}{\partial e}=1 \quad f(x ; a, b)=(a x+b)^{2}
\end{aligned}
$$

## Backpropagation

- Initialize gradient to 1 for given output node $f$
- (assuming that this output node is a scalar)
- Loop over nodes in graph in reversed topological order
- (i.e. children come before parents)
- Compute gradient of output node w/r/t this node, in terms of gradients w/r/t this node's children
- Apply the chain rule!


## Backpropagation Algorithm

```
def backward(self) -> None:
    """Run backward pass from a scalar tensor.
    All Tensors in the graph above this one will wind up having their
gradients stored in `grad`.
Raises:
        ValueError, if this is not a scalar.
"!"
if not np.isscalar(self.value):
    raise ValueError("Can only call backward() on scalar Tensors.")
# dL / dL = 1
self.grad = np.ones(self.value.shape)
# NOTE: building a graph, then sorting, is not maximally efficient
# but the graph can be used for visualization etc
graph = self.get_graph_above()
reverse_topological = reversed(list(nx.topological_sort(graph)))
for tensor in reverse_topological:
    tensor._backward()
```


## Backpropagation Algorithm

```
def backward(self) -> None:
    """Run backward pass from a scalar tensor.
```

    All Tensors in the graph above this one will wind up having their
    gradients stored in `grad`.
Raises:
ValueError, if this is not a scalar.
"॥"
if not np.isscalar(self.value):
raise ValueError("Can only call backward() on scalar Tensors.")
\# dL / dL = 1
self.grad = np. ones(self.value. shape)
\# NOTE: building a graph, then sorting, is not maximally efficient
\# but the graph can be used for visualization etc
graph = self.get_graph_above()
reverse_topological = reversed(list(nx.topological_sort(graph)))
for tensor in reverse_topological:
tensor._backward()

## Why back-propagation?

- Extremely efficient method for computing all gradients
- Compute once
- Store and re-use redundant computation
- Whence a form of dynamic programming
- Traverse each edge once, instead of once per
 dependency path


## Why back-propagation?

- Extremely efficient method for computing all gradients
- Compute once
- Store and re-use redundant computation
- Whence a form of dynamic programming
- Traverse each edge once, instead of once per
 dependency path


## Why back-propagation?

- Extremely efficient method for computing all gradients
- Compute once
- Store and re-use redundant computation
- Whence a form of dynamic programming
- Traverse each edge once, instead of once per
 dependency path


## Why back-propagation?

- Extremely efficient method for computing all gradients
- Compute once
- Store and re-use redundant computation
- Whence a form of dynamic programming
- Traverse each edge once, instead of once per
 dependency path


## Why back-propagation?

- Extremely efficient method for computing all gradients
- Compute once
- Store and re-use redundant computation
- Whence a form of dynamic programming
- Traverse each edge once, instead of once per
 dependency path


## Forward/backward API

## Nodes in Computational Graph

- Forward pass:
- Compute value given parents' values
- Backward pass:
- Compute parents' gradients given children's



## Nodes in Computational Graph

- Forward pass:
- Compute value given parents' values
- Backward pass:
- Compute parents' gradients given children's



## Nodes in Computational Graph

- Forward pass:
- Compute value given parents' values
- Backward pass:
- Compute parents' gradients given children's



## Nodes in Computational Graph

- Forward pass:
- Compute value given parents' values
- Backward pass:
- Compute parents' gradients given children's



## Nodes in Computational Graph

- Forward pass:
- Compute value given parents' values
- Backward pass:
- Compute parents' gradients given children's



## Nodes in Computational Graph

- Forward pass:
- Compute value given parents' values
- Backward pass:
- Compute parents' gradients given children's



## Forward/Backward API

class Operation:
@staticmethod
def forward(
ctx: List[np.ndarray], *inputs: List[np.ndarray], **kwargs
) -> np.ndarray:
"""Forward pass of an operation.

Args:
ctx: empty list of arrays; can be used to store values for backward pass inputs: arguments to this operation

## Returns:

output of the operation, assumed to be one numpy array
"""
raise NotImplementedError
@staticmethod
def backward(ctx: List[np.ndarray], grad_output: np.ndarray) -> List[np.ndarray]: """Backward pass of an op, returns $\mathrm{dL} / \mathrm{dx}$ for each x in parents of this op.

Args:
ctx: stored values from the forward pass
grad_output: dL/dv, where v is output of this node
Returns:
a _list_ of arrays, $\mathrm{dL} / \mathrm{dx}$, for each x that was input to this op """

From Shane's edugrad mini-library, which you will use

## Example: Addition

```
@tensor_op
class add(Operation):
    @staticmethod
    def forward(ctx, a, b):
        return a + b
@staticmethod
def backward(ctx, grad_output):
    return grad_output, grad_output
    \frac{\partialL}{\partiala}}\quad\frac{\partialL}{\partialb
```


## Example: ReLU

```
class relu(Operation):
    def forward(ctx, x):
    return np.maximum(0, x)
    def backward(ctx, grad_output):
```

$\operatorname{ReLU}(x)=\max (0, x)$

## Example: ReLU


$\operatorname{ReLU}(x)=\max (0, x)$

```
class relu(Operation):
    def forward(ctx, x):
    return np.maximum(0, x)
```

def backward(ctx, grad_output):

## Example: ReLU


$\operatorname{ReLU}(x)=\max (0, x)$
$\frac{\partial R}{\partial x}= \begin{cases}1 & x>0 \\ 0 & \text { otherwise }\end{cases}$

```
class relu(Operation):
    def forward(ctx, x):
    return np.maximum(0, x)
```

def backward(ctx, grad_output):

## Example: ReLU


$\operatorname{ReLU}(x)=\max (0, x)$
$\frac{\partial R}{\partial x}= \begin{cases}1 & x>0 \\ 0 & \text { otherwise }\end{cases}$

```
class relu(Operation):
    def forward(ctx, x):
    return np.maximum(0, x)
```

def backward(ctx, grad_output):

## Example: ReLU

@tensor_op
class relu(Operation):
@staticmethod
def forward(ctx, value):
new_val = np.maximum(0, value)
ctx.append(new_val)
return new_val
@staticmethod
def backward(ctx, grad_output):
value $=$ ctx[-1]
return [(value > 0).astype(float) * grad_output]

## Example: ReLU

@tensor_op
class relu(Operation):
@staticmethod
def forward(ctx, value):
new_val = np.maximum(0, value)
ctx.append(new_val)
return new_val
@staticmethod
def backward(ctx, grad_output):
value $=c t x[-1]$
return [(value > 0).astype(float) * grad_output]
Save and retrieve the input value!

## Example: ReLU

@tensor_op
class relu(Operation):
@staticmethod
def forward(ctx, value):
new_val = np.maximum(0, value)
ctx.append(new_val)
return new_val
@staticmethod
def backward(ctx, grad_output):
value $=c t x[-1]$
return [(value > 0).astype(float) * grad_output]
Save and retrieve the input value!
local gradient
times upstream
gradient

## Example: ReLU

@tensor_op
class relu(Operation):
@staticmethod
def forward(ctx, value):
new_val = np.maximum(0, value)
ctx.append(new_val)
return new_val
@staticmethod
def backward(ctx, grad_output):
value = ctx[-1]
return [(value > 0).astype(float) * grad_output]
local gradient
times upstream gradient

NB: list, one downstream gradient per input (in this case, one)

## Adding Gradients with Multiple Outputs



Multivariable chain rule: $\quad \frac{\partial L}{\partial x}=\frac{\partial L}{\partial f} \frac{\partial f}{\partial x}+\frac{\partial L}{\partial g} \frac{\partial g}{\partial x}$

## Adding Gradients with Multiple Outputs

```
def _backward():
    grads = op.backward(ctx, new_tensor.grad)
    for idx in range(len(inputs)):
        inputs[idx].grad += grads[idx]
```


## Adding Gradients with Multiple Outputs

```
def _backward():
    grads = op.backward(ctx, new_tensor.grad)
    for idx in range(len(inputs)):
        inputs[idx].grad+==grads[idx]
```



Adding over paths handled implicitly in auto-grad libraries; more power to the forward/backward API

## Schematic of Graph for Training



## Two Modes of Graph Construction

- Static (e.g. TensorFlow <2.x)
- First: define entire graph structure
- Then: pass in inputs, execute nodes
- [session.run, feed_dicts, oh my!]
- Dynamic (e.g. PyTorch, TensorFlow 2.x)
- The graph is defined dynamically in the forward pass
- E.g. operators on Tensors store the links to their input Tensors, thus building a graph


## Training Loop

- Define (now, dynamically) computation graph, get backprop "automatically"


## Training Loop

- Define (now, dynamically) computation graph, get backprop "automatically"

```
for epoch in range(2): 非 loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
```


## Training Loop

- Define (now, dynamically) computation graph, get backprop "automatically"



## Training Loop

- Define (now, dynamically) computation graph, get backprop "automatically"



## Training Loop

- Define (now, dynamically) computation graph, get backprop "automatically"



## More Resources

- Debugging:
- Symbolic gradient computation; $f(x+h)-f(x-h) / 2 h$
- Shapes! Gradients should be same shape as values [b/c scalar outputs]
- Computing vector/matrix derivatives
- Work with small toy examples, compute for a single element, generalize
- http://cs231n.stanford.edu/vecDerivs.pdf
- http://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf


## Next Time

- Feed-forward models for:
- Classification: Deep Averaging Network
- Language Modeling
- Training tips and tricks

