
FFNNs for Classification and Language
Modeling

Ling 575j: Deep Learning for NLP
C.M. Downey
Spring 2023

1

Today’s Plan
● Deep Averaging Networks for text classification

● Neural Probabilistic Language Model

● Additional Training Notes

● Regularization

● Early stopping

● Hyper-parameter searching

● HW3 / edugrad / PyTorch

2

Note on Random Seeds
● In word2vec.py / util.py:

● Random seed:

● Behavior of pseudo-random number generators is determined
by their “seed” value

● If not specified, determined by e.g. # of seconds since 1970

● Same seed —> same (non-random) behavior

● Sources of randomness in DL: shuffling the data each
epoch, weight initialization, negative sampling, …

● Very important for reproducibility!

● In general, run on several seeds and report means / std’s

3

Random Seeds and Reproducibility

4

Deep

Random Seeds, cont
● Ideally: “randomly generate” seeds, but save/store them!

● Random seed is not a hyper-parameter! (Some discussions in these threads.)

5source

https://twitter.com/milesaturpin/status/1251218514272301057
https://twitter.com/jakevdp/status/1247742792861757441

Deep Averaging Networks

6

7

https://www.aclweb.org/anthology/P15-1162/

Deep, Unordered, Classification

8

Deep, Unordered, Classification
● Deep:

● One or more hidden layers in a neural network

8

Deep, Unordered, Classification
● Deep:

● One or more hidden layers in a neural network

● Unordered:

● Text is represented as a “bag of words”

● No notion of syntactic order

8

Deep, Unordered, Classification
● Deep:

● One or more hidden layers in a neural network

● Unordered:

● Text is represented as a “bag of words”

● No notion of syntactic order

● Classification:

● Applied to several classification tasks, including SST

● Via softmax layer

8

Model Architecture, One Input

9

Model Architecture, One Input

9

Word embeddings:
Pre-trained or learned

Hyper-parameters

10

Hyper-parameters
● Embedding dimension

10

Hyper-parameters
● Embedding dimension

● Number of hidden layers

10

Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:

● Activation function

● Hidden dimension size

10

Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:

● Activation function

● Hidden dimension size

● Exercise: find the values for these hyper-parameters in the paper

10

Note on Embedding Layer
● Let be the integer index of word

● One-hot vector (t=4):

● For an embedding matrix of shape (embedding_dimension, vocab_size)
and the embedding for t:

● Direct look-up is faster than matrix multiplication, but the latter generalizes in
useful ways that we will see soon

t w

wt = [0 0 0 1 ⋯ 0]

E
Et

11

Et = Ewt

Batched Computation in DAN
● We saw how to pass one piece of text through the DAN

● How can we leverage larger batch sizes and their advantages?

● “Predator is a masterpiece”

● “Parasite won Best Picture for 2019”

● What issues here?

● Different lengths —> different number of embeddings —> different input
size (intuitively)

● But we need a matrix of shape (representation_size, batch_size) for inputs

12

Batching with Bag of Words
● Bag of words representation:

● {word1: 3, word36: 1, word651: 1, …}

● Let s be a sentence with words occurring times:

● Bag of words vector:

● For every sentence, the vectors have the same size: (vocab size)

● So they can be stacked into a matrix, of shape (vocab_size, batch_size)

● Divide each row by length of that sentence to get average of embeddings

ti counti bags := {ti : counti}

s := [3 0 ⋯ 1 ⋯ 1 ⋯]

vecs

13

Es =
len(s)

∑
i=0

Esi
= ∑

t∈s

Et ⋅ countt

Output and Loss for Classification

14

logits = W ⋅ hidden + b
̂y = probs = softmax(logits)

Output and Loss for Classification

14

logits = W ⋅ hidden + b
̂y = probs = softmax(logits)

ℓCE(̂y, y) = −
|classes|

∑
i=0

yi log ̂yi

Output and Loss for Classification

14

logits = W ⋅ hidden + b
̂y = probs = softmax(logits)

ℓCE(̂y, y) = −
|classes|

∑
i=0

yi log ̂yi

One hot for true class label

Results

15

Results

15

“Rivals syntactic
methods”

Error Analysis

16

Two Additional “Tricks”
● Word dropout

● A type of regularization (more later)

● Adagrad optimizer

17

Word Dropout
● For each input sequence, flip |V| coins with probability p

● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

18

Word Dropout
● For each input sequence, flip |V| coins with probability p

● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

18

vecs = [20110]
mask = [01110]

vecs ⊙ mask = [00110]

Word Dropout
● For each input sequence, flip |V| coins with probability p

● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

18

vecs = [20110]
mask = [01110]

vecs ⊙ mask = [00110]

Generated randomly
for each sentence

Adagrad
● “Adaptive Gradients”

● Key idea: adjust the learning rate per parameter

● Frequent features —> more updates

● Adagrad will make the learning rate smaller for those

19

Adagrad

20

● Let

● SGD:

● Adagrad:

gt,i := ∇θt,i
ℒ

θt+1,i = θt,i − αgt,i

θt+1,i = θt,i −
α

Gt,i + ϵ
gt,i

Gt,i =
t

∑
k=0

g2
k,i

Adagrad
● Pros:

● “Balances” parameter importance

● Less manual tuning of learning rate needed (0.01 default)

● Cons:

● increases monotonically, so step-size always gets smaller

● Newer optimizers try to have the pros without the cons

● Resources:

● Original paper (veeery math-y): https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

● Overview of optimizers: https://ruder.io/optimizing-gradient-descent/index.html#adagrad

Gt,i

21

https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://ruder.io/optimizing-gradient-descent/index.html#adagrad

Unordered Models in the Large LM Era
● Last paper: “Deep Unordered Composition Rivals Syntactic Methods for

Text Classification” —2015

● From ~April 2021:

22

https://arxiv.org/pdf/2104.06644.pdf

Unordered Models in the Large LM Era
● Last paper: “Deep Unordered Composition Rivals Syntactic Methods for

Text Classification” —2015

● From ~April 2021:

22

https://arxiv.org/pdf/2104.06644.pdf

Unordered Models in the Large LM Era

23

Unordered Models in the Large LM Era
● “We observed overwhelmingly that MLM’s success is most likely not

(emphasis added) due to its ability to discover syntactic and semantic
mechanisms necessary for a traditional language processing pipeline.
Instead, our experiments suggest that MLM’s success can be mostly
explained by it having learned higher-order distributional statistics that
make for a useful prior for subsequent fine-tuning.”

24

Neural Probabilistic Language Model

25

Language Modeling
● A language model parametrized by computes:

● Typically (though we’ll see variations):

● E.g. of labeled data: “Today is the seventh day of 575j.” —>

● (<s>, Today)

● (<s> Today, is)

● (<s> Today is, the)

● (<s> Today is the, seventh)

θ

26

Pθ(w1, …, wn)

Pθ(w1, …, wn) = ∏
i

Pθ(wi |w1, …, wi−1)

N-gram LMs
● Dominant approach for a long time uses n-grams:

● Estimate the probabilities by counting in a corpus

● Fancy variants (back-off, smoothing, etc)

● Some problems:

● Huge number of parameters:

● Doesn’t generalize to unseen n-grams

≈ |V |n

27

Pθ(wi |w1, …, wi−1) ≈ Pθ(wi |wi−1, wi−2, …, wi−n)

Neural LM
● Core idea behind the Neural Probabilistic LM

● Make n-gram assumption

● But: learn word embeddings

● “n-gram of word vectors”

● Probabilities: represented by a neural network, not counts

28

Pros of Neural LM
● Number of parameters:

● Significantly lower, thanks to “low”-dimensional embeddings

● Generalization: embeddings enable generalizing to similar words

29

Neural LM Architecture

30

Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

30

Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

30

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

30

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1 ⋅ embeddings + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

30

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1 ⋅ embeddings + b1)

probabilities = softmax(W2 ⋅ hidden + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

More Detailed Diagram of Architecture

31

JM sec 7.5

Output and Loss
● Softmax + cross-entropy

● Essentially, language modeling is |V|-way classification

● Each word in the vocabulary is a class

32

Evaluation of LMs
● Extrinsic: use in other NLP systems

● Intrinsic: intuitively, want probability of a test
corpus

● Perplexity: inverse probability, weighted by size
of corpus

● Lower is better!

● Only comparable w/ same vocab

33

Perplexity

34

PP(W) = P(w1w2⋯wN)−1/N

= N
1

P(w1w2⋯wN)

= N
1

∏N
i=0 P(wi |w1, …, wi−1)

= 2− 1
N ∑N

i=0 log P(wi|w1,…,wi−1)

Results

35

More Complete Picture of This Model

36source (NAACL ’21)

https://arxiv.org/pdf/2104.03474.pdf

Additional Training Notes:  
Regularization and Hyper-Parameters

37

Overfitting
● Over-fitting: model too closely mimics the training data

● Therefore, cannot generalize well

● Common when models are “over-parameterized”

● E.g. fitting a high-degree polynomial

● Neural models are typically over-parameterized

● Key questions:

● How to detect overfitting?

● How to prevent it?

38

Train, Dev, Test Set Splits
● Split total data into three chunks: train, dev (aka valid), test

● Common: 70/15/15, 80/10/10%

● Train: used for individual model training, as we’ve seen so far

● Dev/valid:

● Evaluation during training

● Hyper-parameter tuning

● Model selection

● Test:

● Final evaluation; DO NOT TOUCH otherwise

39

Early stopping

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”

● Halt when validation error does not improve over patience-many epochs

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”

● Halt when validation error does not improve over patience-many epochs

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”

● Halt when validation error does not improve over patience-many epochs

40

source

Overfitting

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Regularization
● NNs are often overparameterized, so

regularization helps

● L1/L2:

● Dropout:

● During training, randomly turn off X% of
neurons in each layer

● (Don’t do this during testing/predicting)

● Batch Normalization / Layer Norm
● NB: batch size 🤯

41

ℒ′￼(θ, y) = ℒ(θ, y) + λ∥θ∥2

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/abs/1609.04836

Hyper-parameters
● In addition to the model architecture ones mentioned earlier

● Optimizer: SGD, Adam, Adagrad, RMSProp, ….

● Optimizer-specific hyper-parameters: learning rate, alpha, beta, …

● NB: backprop computes gradients; optimizer uses them to update parameters

● Regularization: L1/L2, Dropout, BN, …

● regularizer-specific ones: e.g. dropout rate

● Batch size

● Number of epochs to train for

● Early stopping criterion (e.g. patience)

42

A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all possible

combinations thereof

● Random search: specify possible values for all parameters, randomly sample
values for each, stop when some criterion is met

43

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all possible

combinations thereof

● Random search: specify possible values for all parameters, randomly sample
values for each, stop when some criterion is met

43

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Craft/Art of Deep Learning

44

https://xkcd.com/1838/

https://xkcd.com/1838/

Some Practical Pointers
● Hyper-parameter tuning and the like are not the focus of this course

● For some helpful hand-on advice about training NNs from scratch,
debugging under “silent failures”, etc:

● http://karpathy.github.io/2019/04/25/recipe/

45

http://karpathy.github.io/2019/04/25/recipe/

