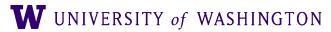
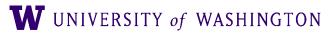
Recurrent Neural Networks, I

Ling 575j: Deep Learning for NLP C.M. Downey Spring 2023



Today's Plan

- Last time:
 - Computation graphs + backpropagation; edugrad
- Feed-forward models for NLP tasks:
 - Deep Averaging Network (DAN)
 - Neural Probabilistic Language Model
- Additional Training Notes
 - Regularization
 - Early stopping
 - Hyper-parameter searching
- Intro to *Recurrent* Neural Networks



Announcements

- Implementing ops in edugrad:
 - API
 - https://github.com/shanest/edugrad
 - Log: base e, don't need to do special handling of bad input arguments (like 0)
- $f(x) = x^2 \times 3x$ and static computation graphs

• HW3 tests: hw3/test_all.py. NB: necessary, but not sufficient, to check correctness of your code. `pytest test_all.py`, from your directory, with environment activated.

• You can use any numpy operations you want; goal is to understand forward/backward

• Edugrad is installed in the course conda environment, so be sure to activate it

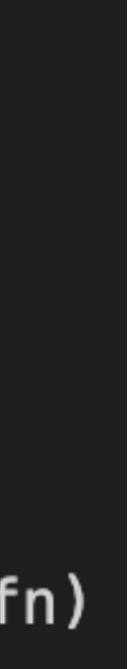
Decorators

- @tensor_op in edugrad code: what is this??
 - This converts `Operation`s into methods on `Tensor`s
 - Handles dynamic graph construction, the `ctx` magic, etc.
- <u>Python decorator</u> (similar to <u>decorator</u> design pattern)
 - Design pattern to extend an object with more functionality
 - Decorators *wrap* their arguments, add features
 - e.g. registering in a central DB
- In python, syntactic sugar:
 - With more complicated use cases
- Canonical examples: @classmethod, @staticmethod

@my_decorator def fn(...):

fn(...):

$fn = my_decorator(fn)$



Decorator Demo

def printer(method, *args): def fn(*args): output = method(*args) print(f"Output: {output}") return fn

@printer def add(a, b): return a + b

add(1, 2) # prints "Output: 3"

Recurrent Neural Networks

- Feed-forward networks: fixed-size input, fixed-size output
 - Previous classifier: average embeddings of words
 - Previous LM: *n*-gram assumption (i.e. fixed-size context of word embeddings)

- Feed-forward networks: fixed-size input, fixed-size output
 - Previous classifier: average embeddings of words
 - Previous LM: *n*-gram assumption (i.e. fixed-size context of word embeddings)
- RNNs process *sequences* of vectors
 - Maintaining "hidden" state
 - Applying the same operation at each step

- Feed-forward networks: fixed-size input, fixed-size output
 - Previous classifier: average embeddings of words
 - Previous LM: *n*-gram assumption (i.e. fixed-size context of word embeddings)
- RNNs process *sequences* of vectors
 - Maintaining "hidden" state
 - Applying the same operation at each step
- Different RNNs:
 - Different operations at each step
 - Operation also called "recurrent cell"
 - Other architectural considerations (e.g. depth; bidirectionally)

Long-distance dependencies, I: number

- Language modeling (fill-in-the-blank)
 - The keys _____
 - The keys on the table _____
 - The keys next to the book on top of the table _____
- away
 - And number can disagree with linearly-close nouns

• To get the number on the verb, need to look at the subject, which can be very far

Selectional Restrictions

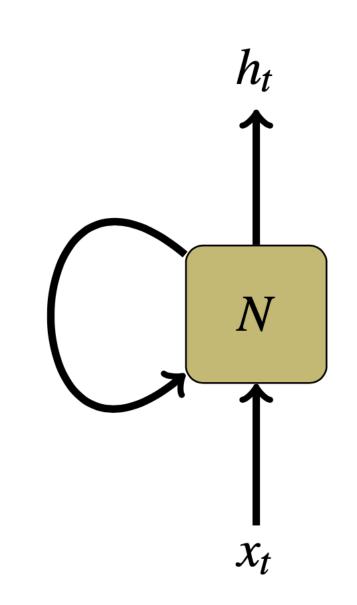
- The family moved from the city because they wanted a larger _____.
- The team moved from the city because they wanted a larger _____.

Selectional Restrictions

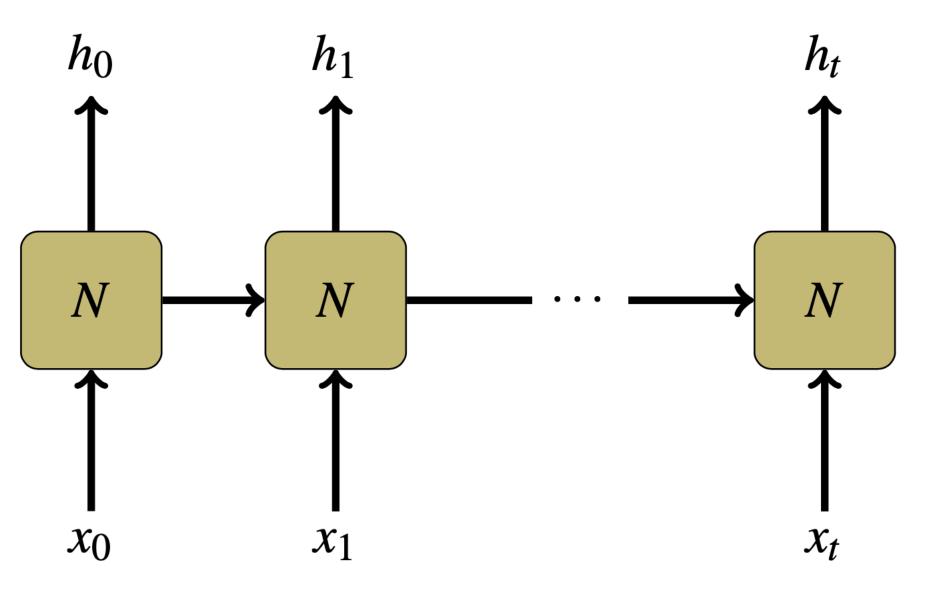
- The family moved from the city because they wanted a larger house.
- The team moved from the city because they wanted a larger market.

- Need models that can capture long-range dependencies like this.
- N-gram (whether count-based or neural) cannot. E.g., with n=4:
 - P(word I "they wanted a larger")

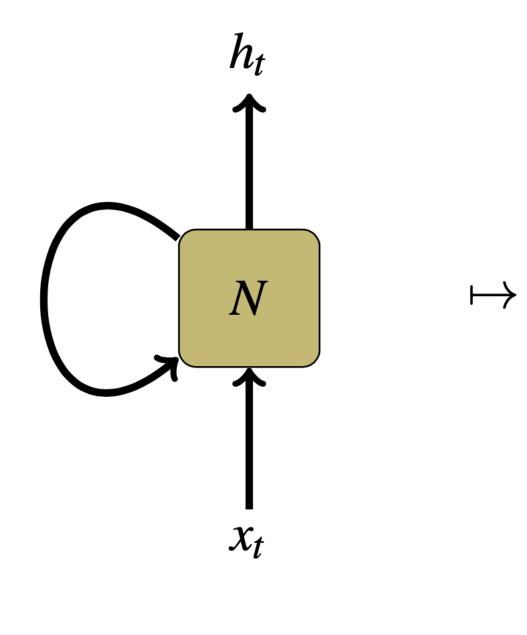
 \mapsto



RNNs

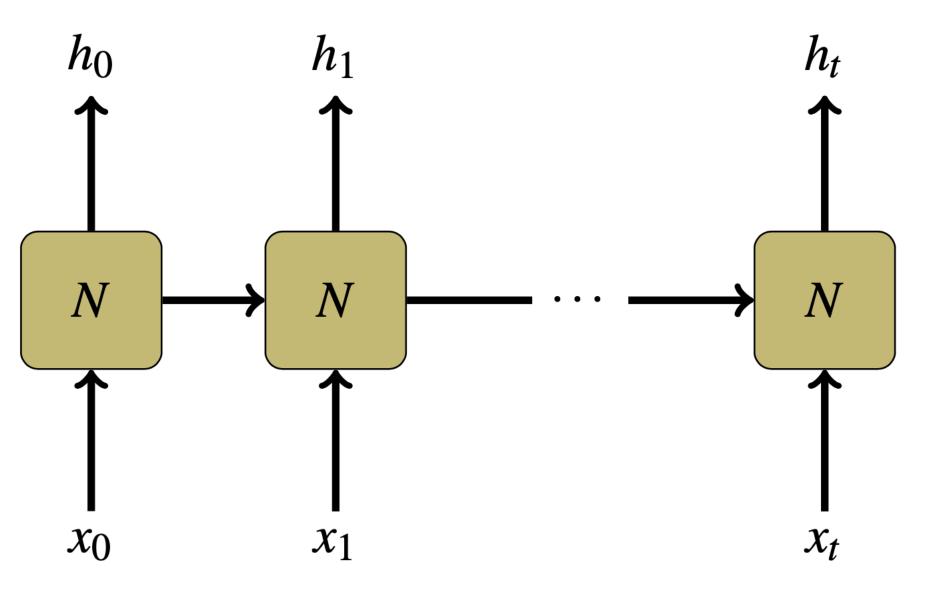


Steinert-Threlkeld and Szymanik 2019; Olah 2015

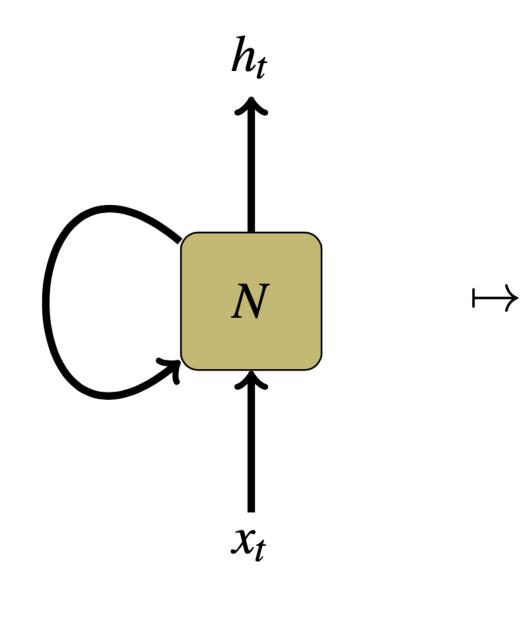


 $h_t = f(x_t, h_{t-1})$

RNNs

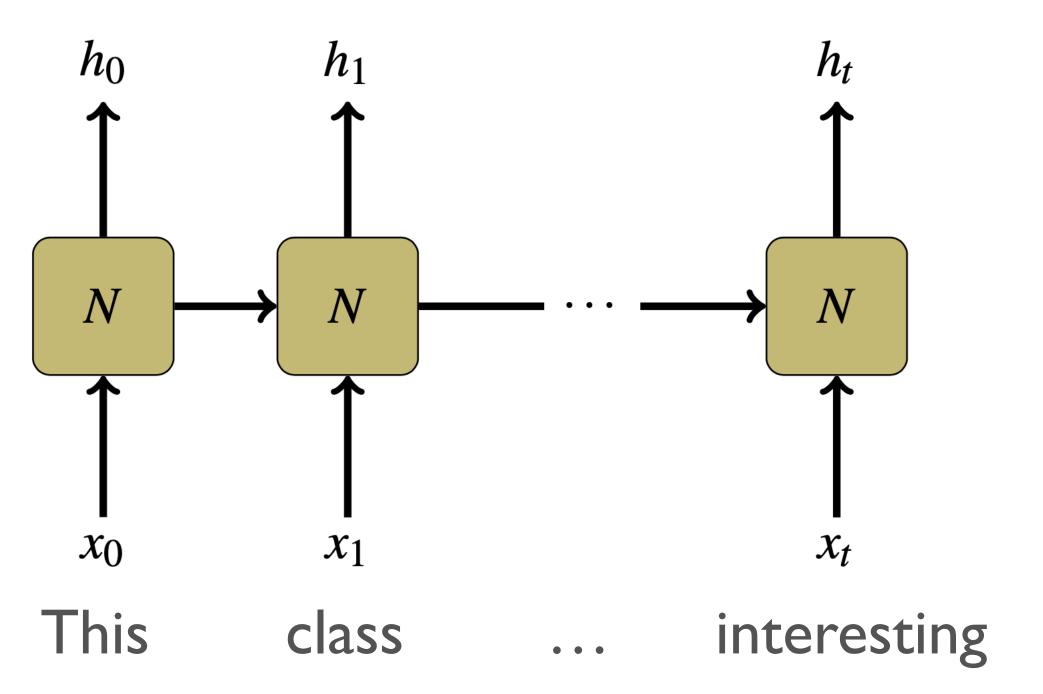


Steinert-Threlkeld and Szymanik 2019; Olah 2015

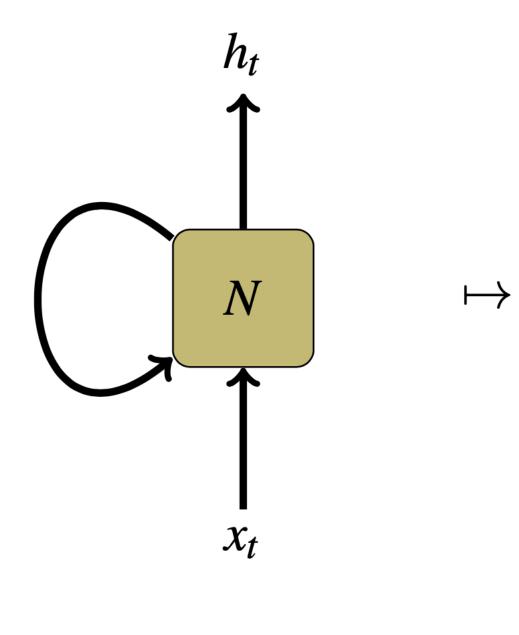


 $h_t = f(x_t, h_{t-1})$

RNNs

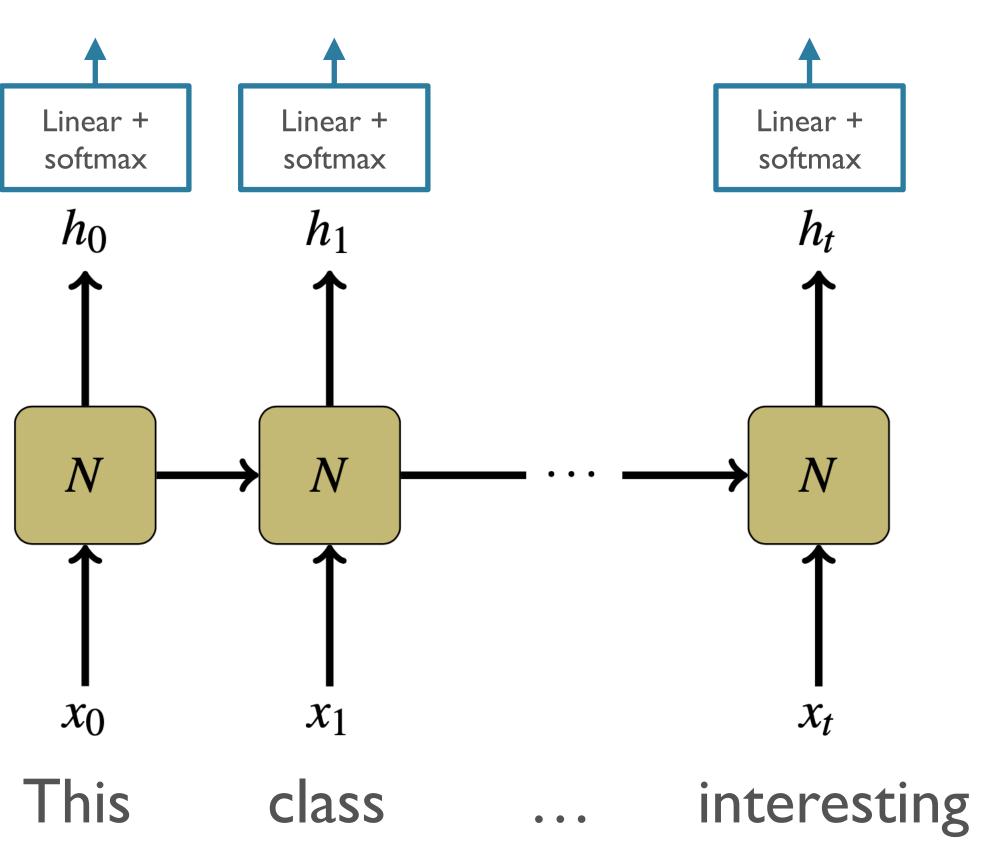


Steinert-Threlkeld and Szymanik 2019; Olah 2015



 $h_t = f(x_t, h_{t-1})$

RNNs



Steinert-Threlkeld and Szymanik 2019; Olah 2015

Simple / Vanilla / Elman RNNs

- Same kind of feed-forward computation we've been studying, but:
 - x_t : sequence element at time t
 - h_{t-1} : hidden state of the model at previous time t-1

Simple / Vanilla / Elman RNNs

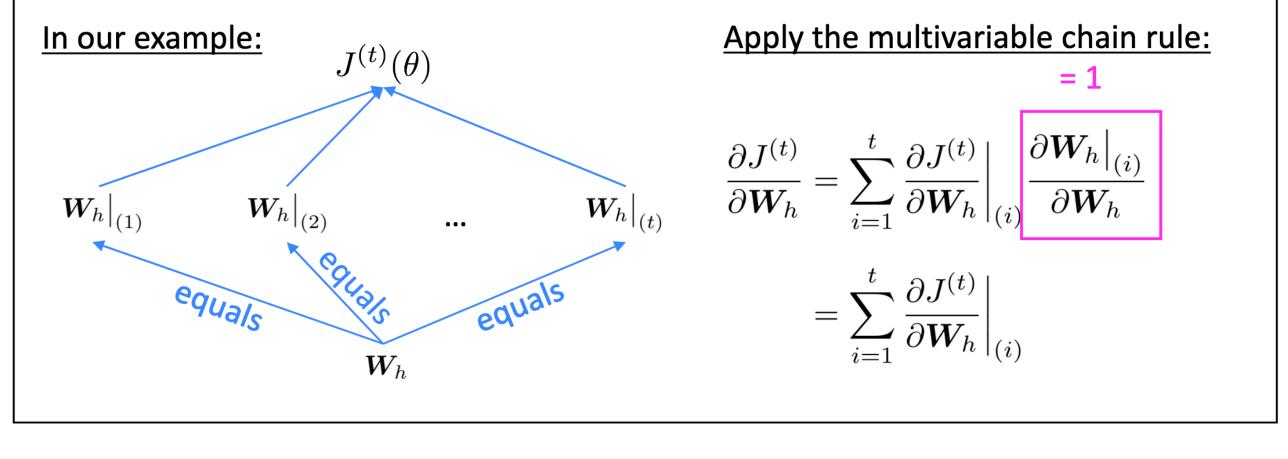
- Same kind of feed-forward computation we've been studying, but:
 - x_t : sequence element at time t
 - h_{t-1} : hidden state of the model at previous time t-1

Simple/"Vanilla" RNN:

 $h_{t} = \tanh(W_{x}x_{t} + W_{h}h_{t-1} + b)$

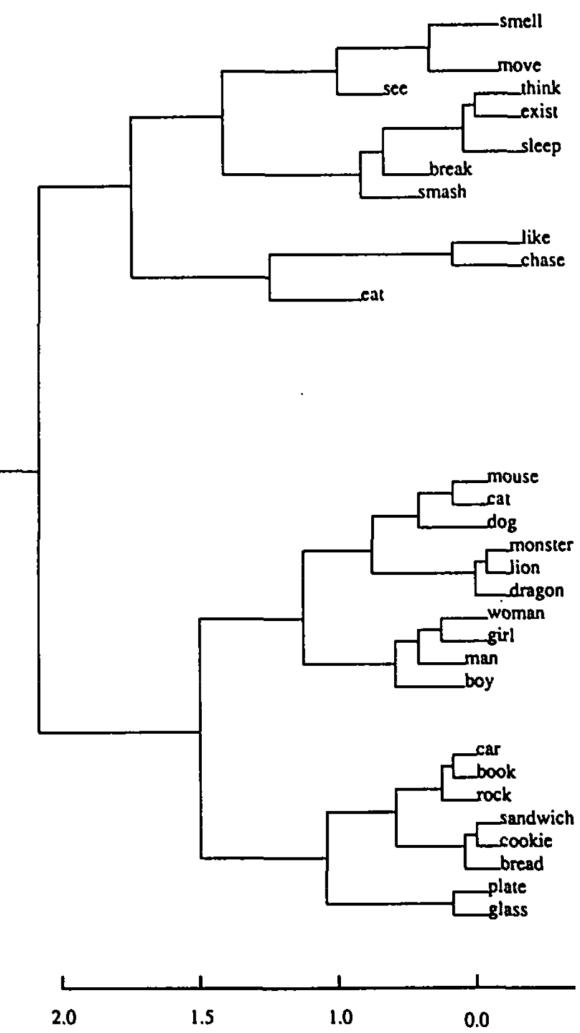
Training: BPTT

- Backpropagation Through Time
- "Unroll" the network across time-steps
- Apply backprop to the "wide" network
 - Each cell has the *same* parameters
 - Gradients sum across time-steps
 - Multi-variable chain rule

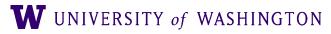


Power of RNNs

Hierarchical clustering of Vanilla RNN hidden states trained as LM on synthetic data:

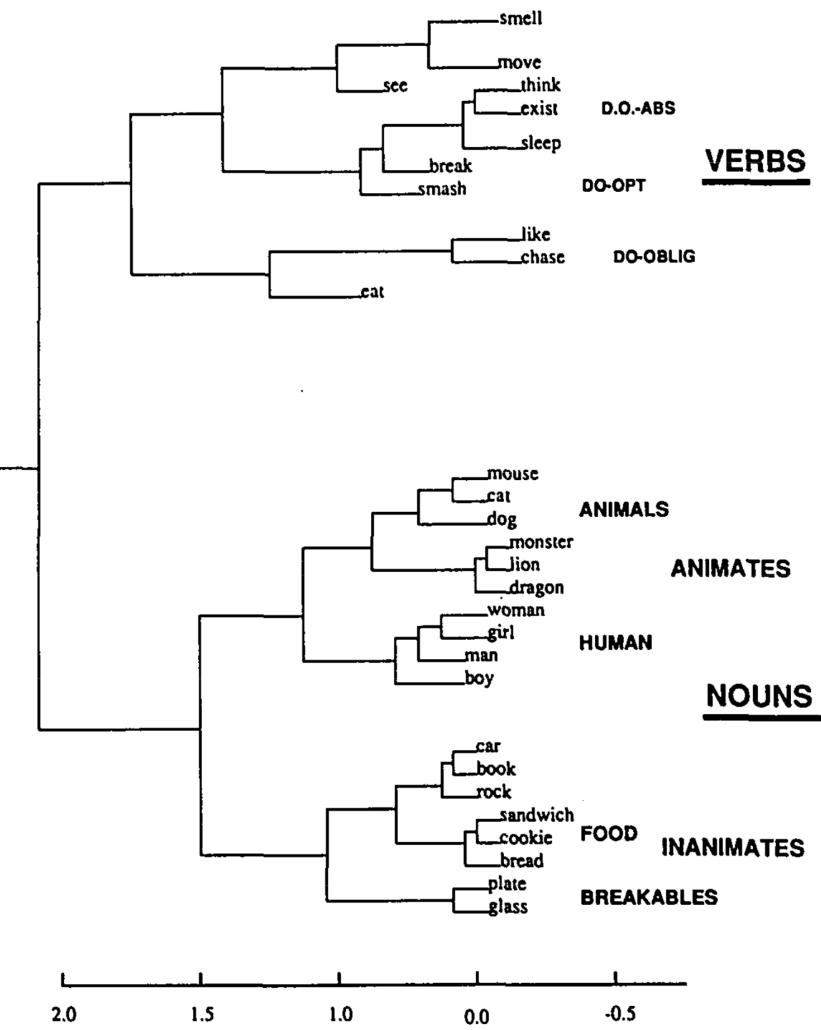


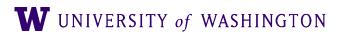
What trends do you notice?



Power of RNNs

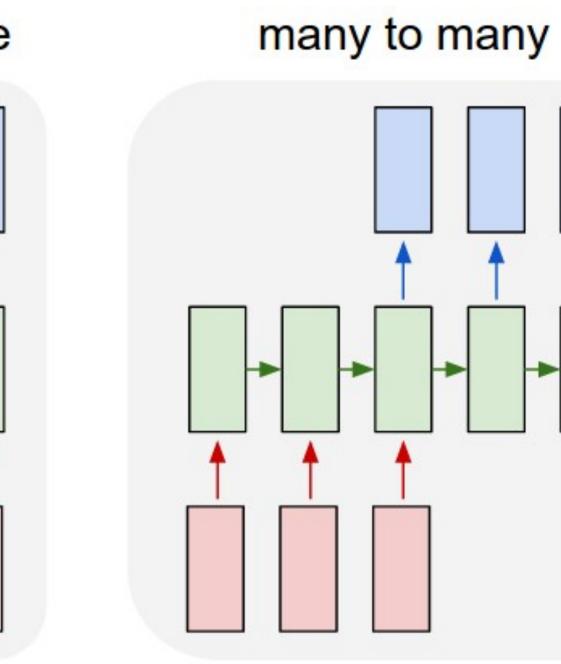
Hierarchical clustering of Vanilla RNN hidden states trained as LM on synthetic data:



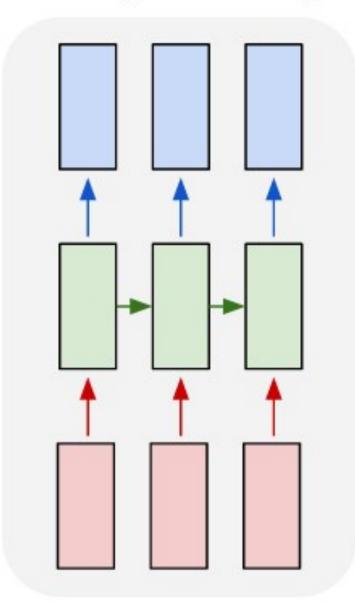


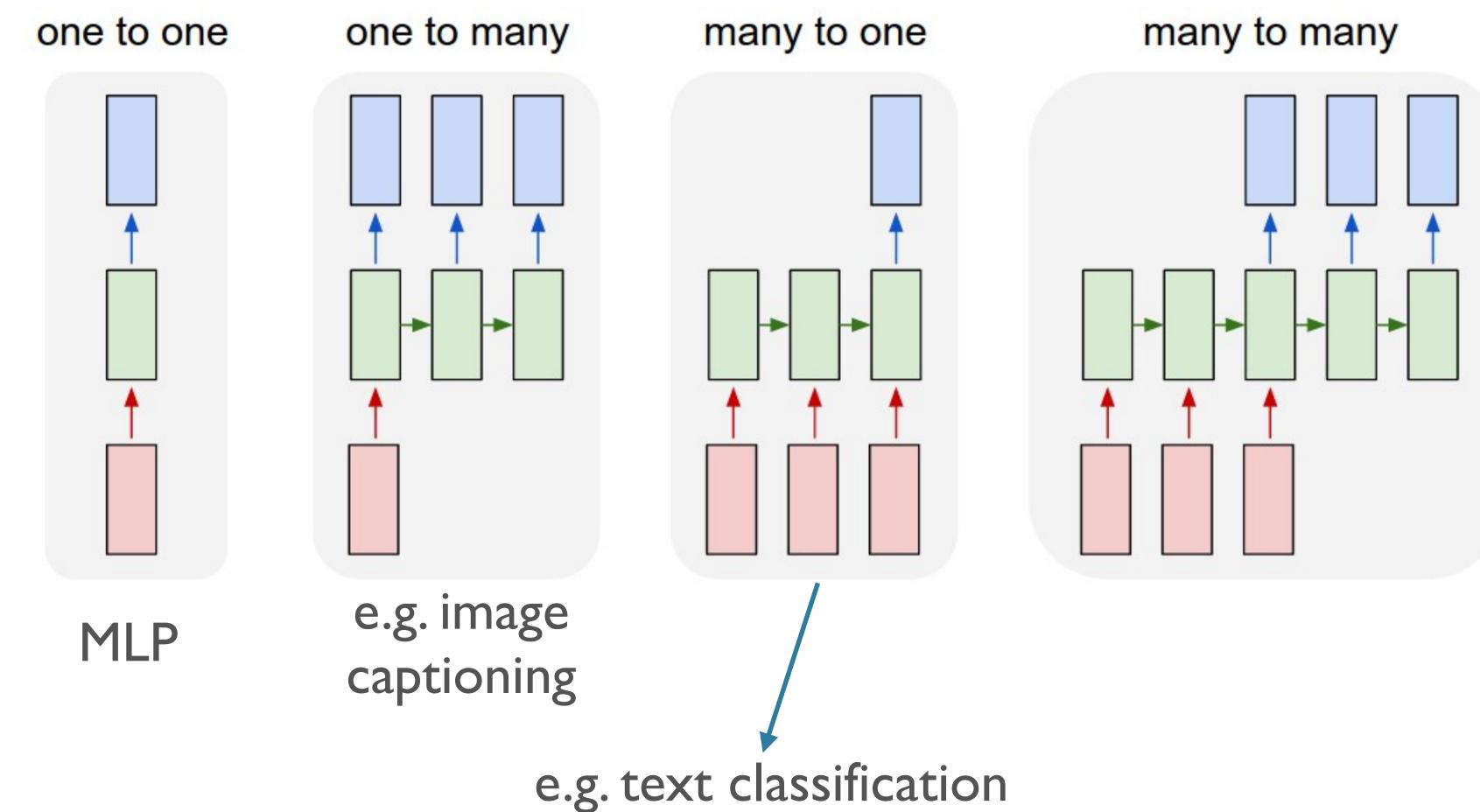
many to one one to many one to one -MLP

e.g. image captioning

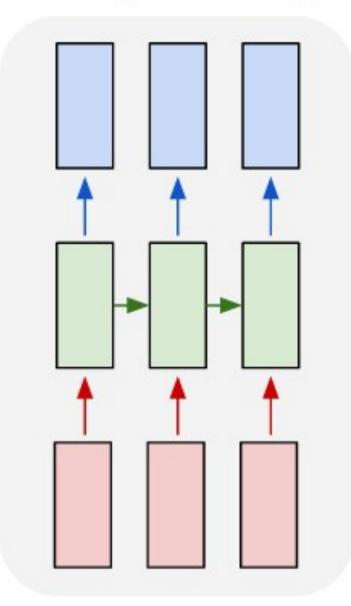


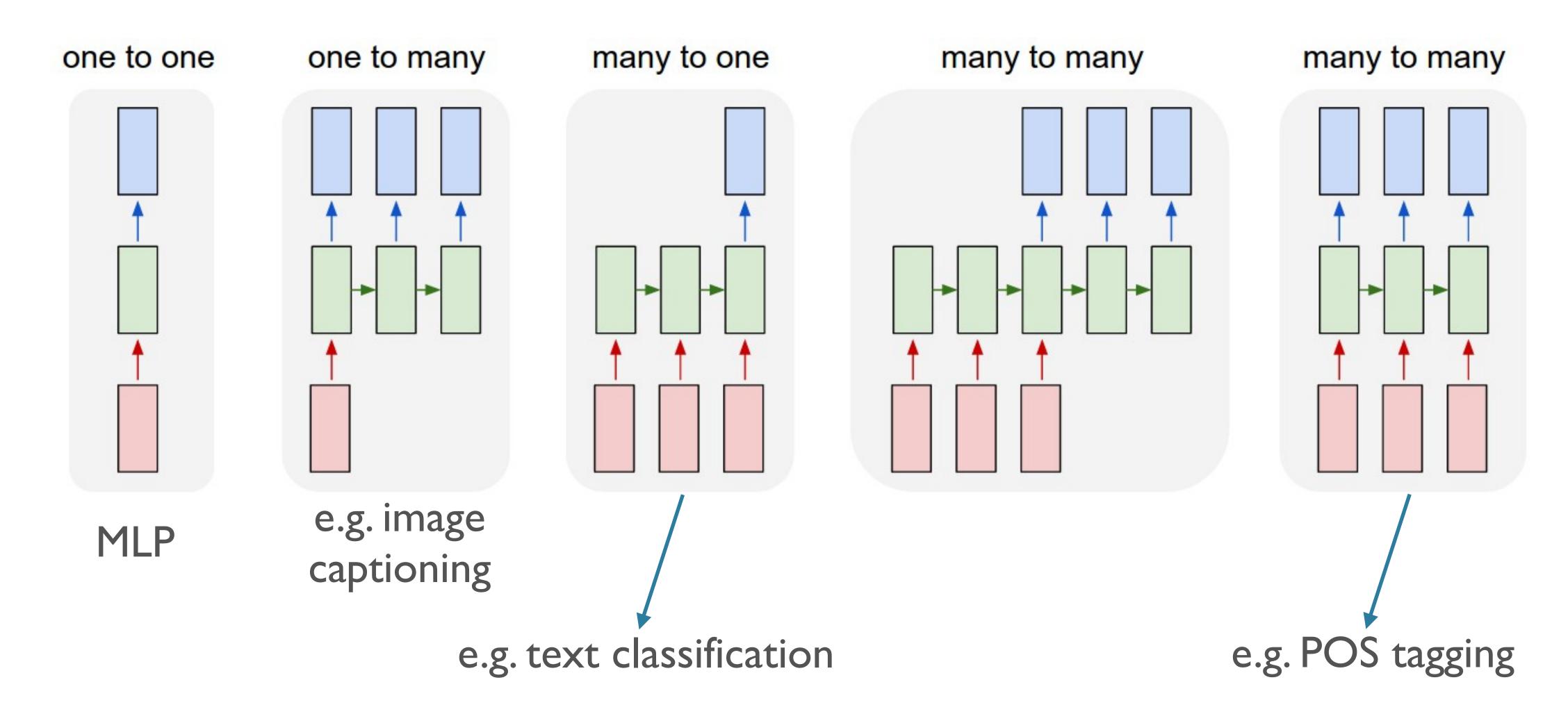
many to many

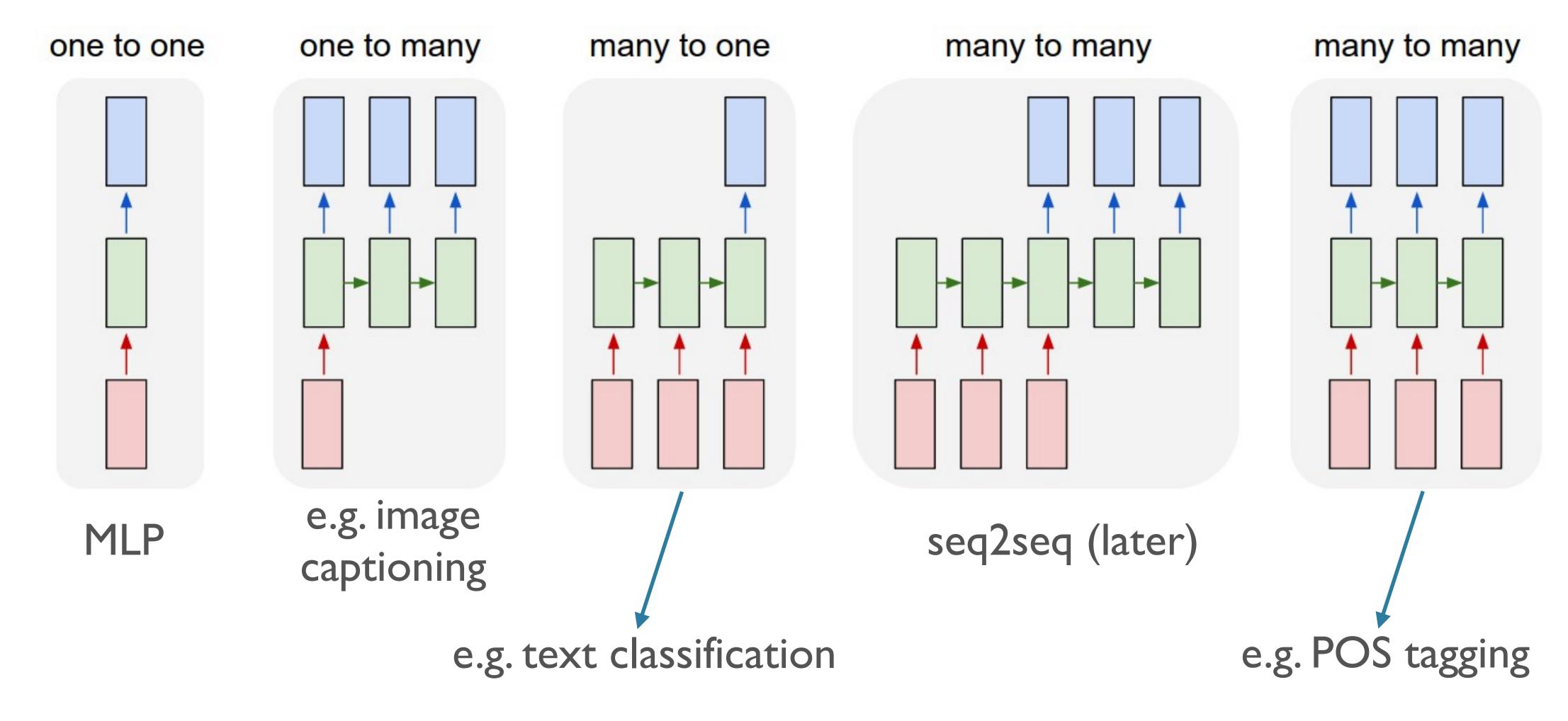




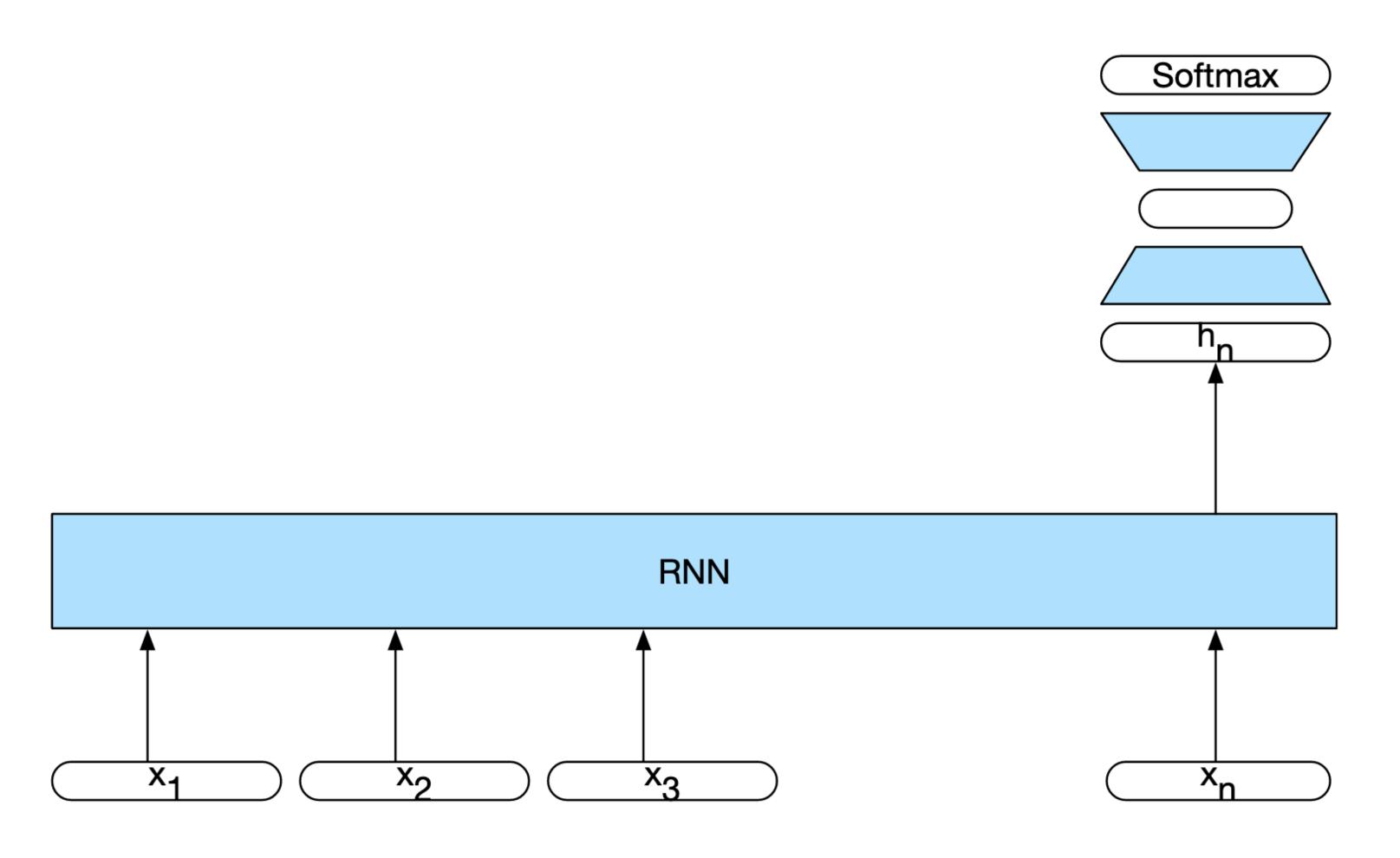
many to many





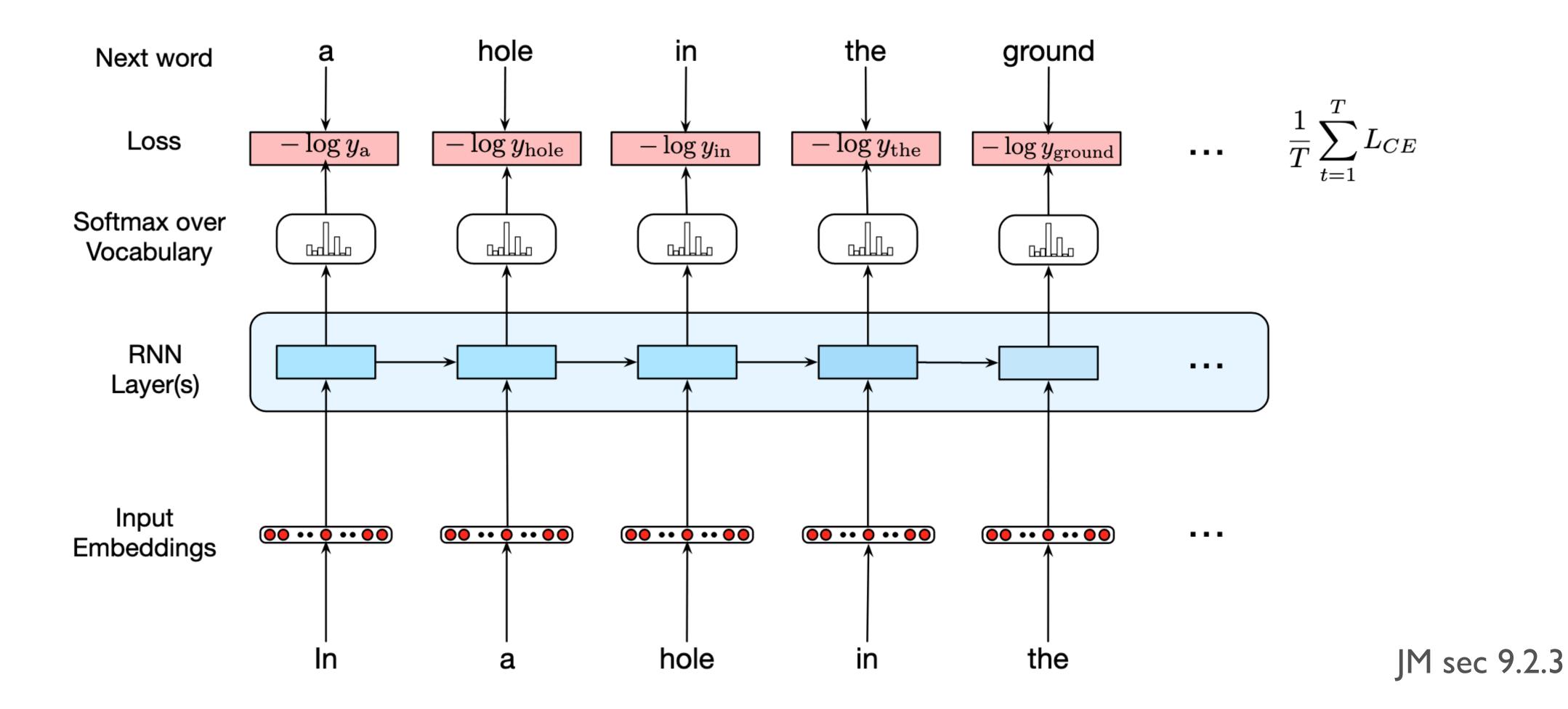


RNN for Text Classification

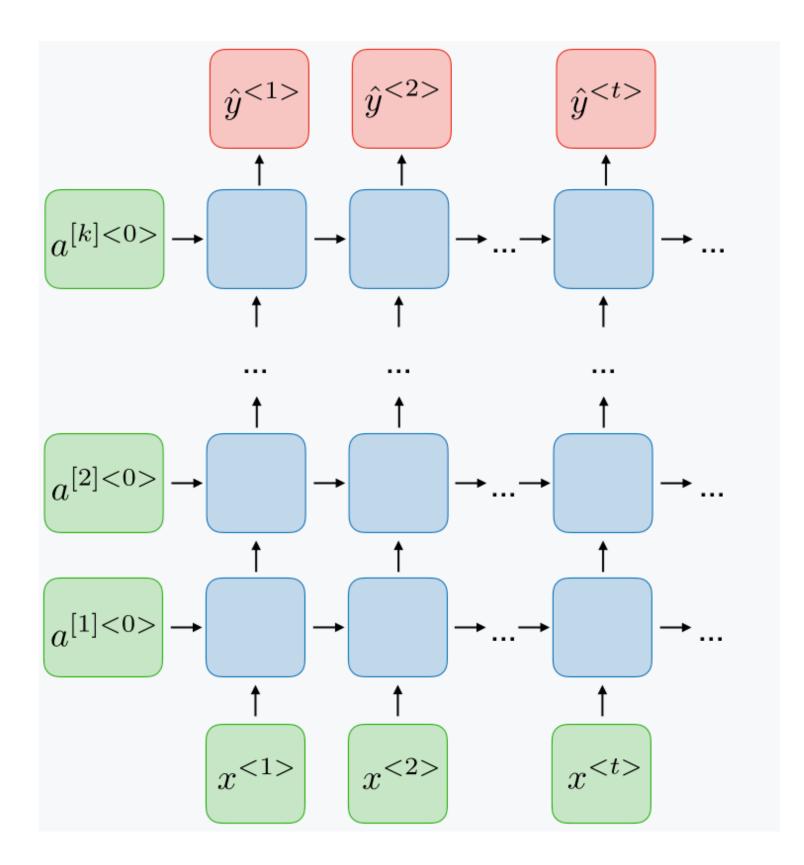


JM sec 9.2.5

RNNs for Language Modeling

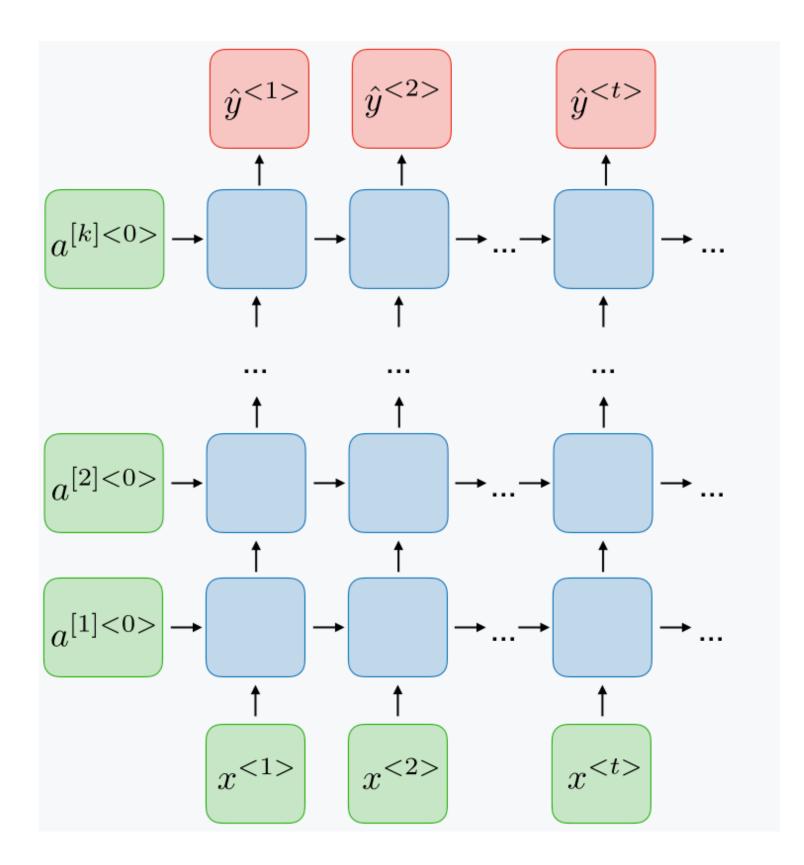


• Deep RNNs:

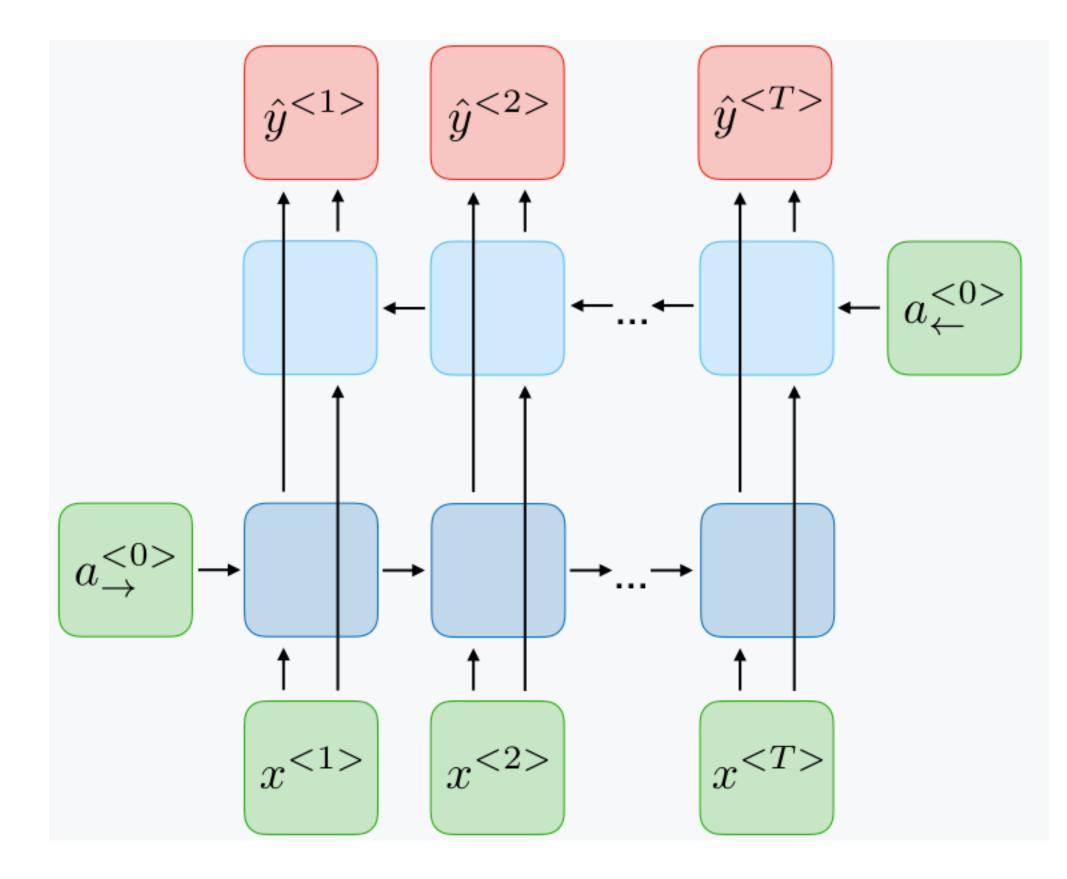


Source: RNN cheat sheet

• Deep RNNs:

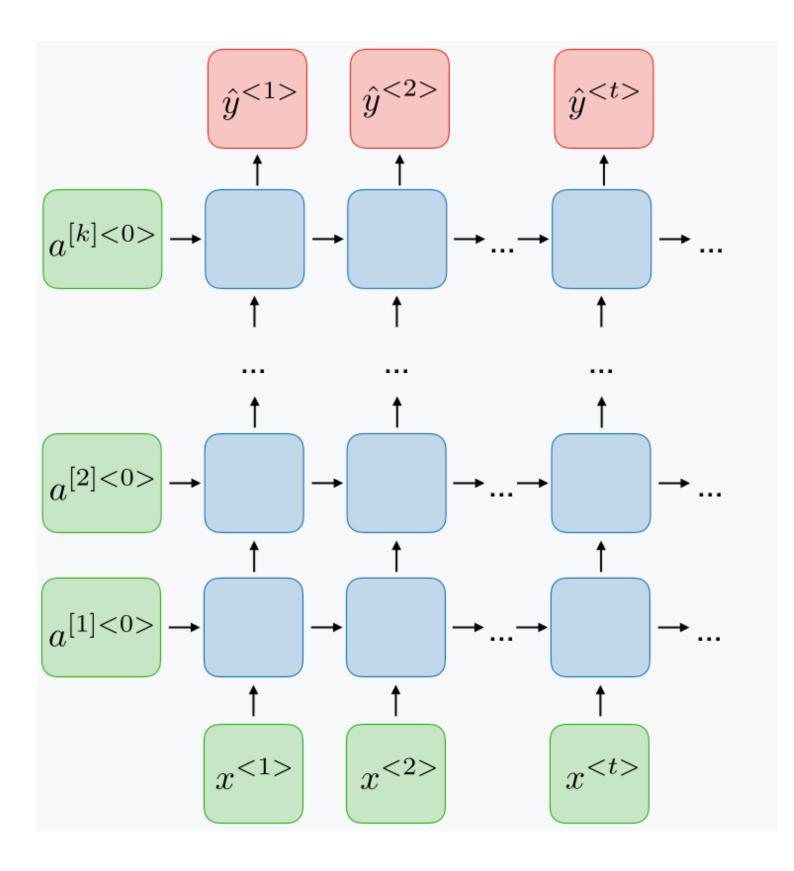


Bidirectional RNNs:

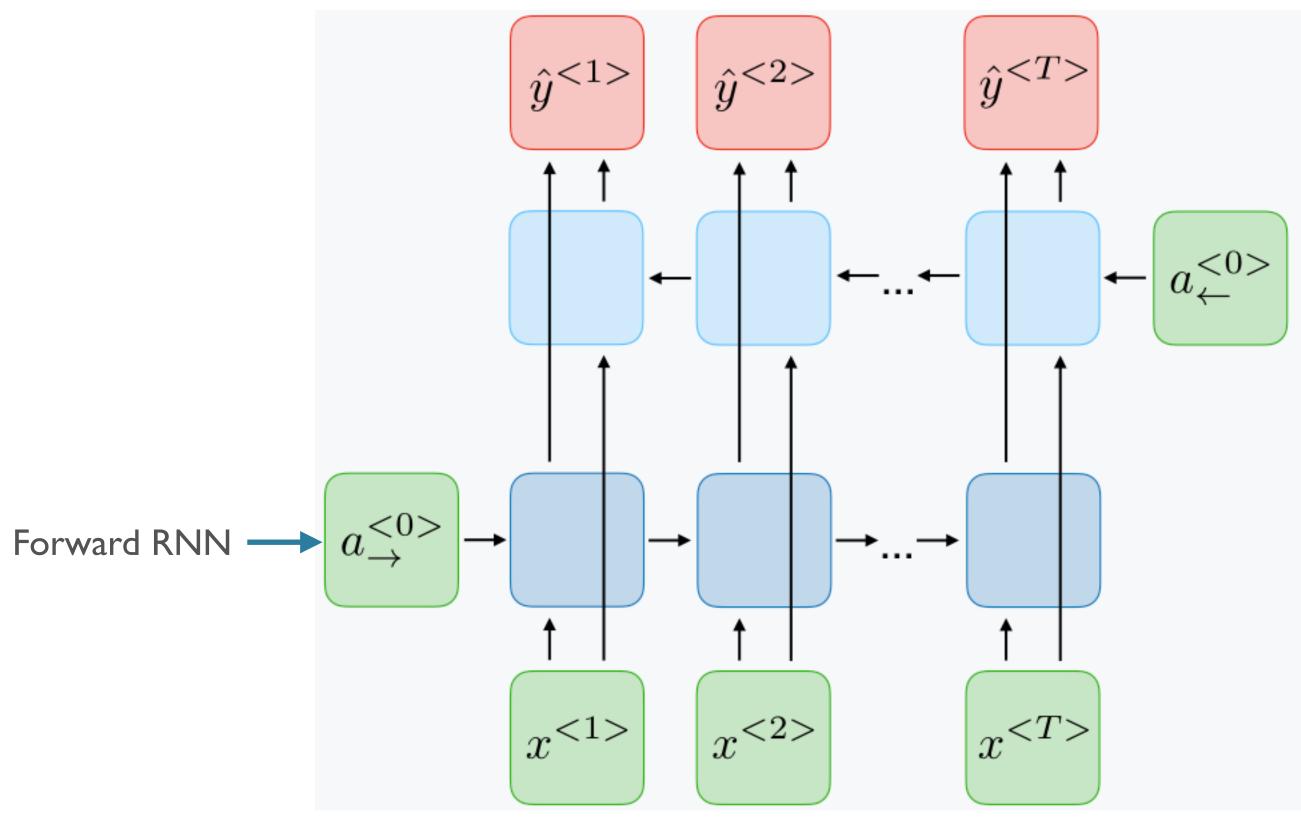


Source: RNN cheat sheet

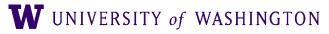
• Deep RNNs:



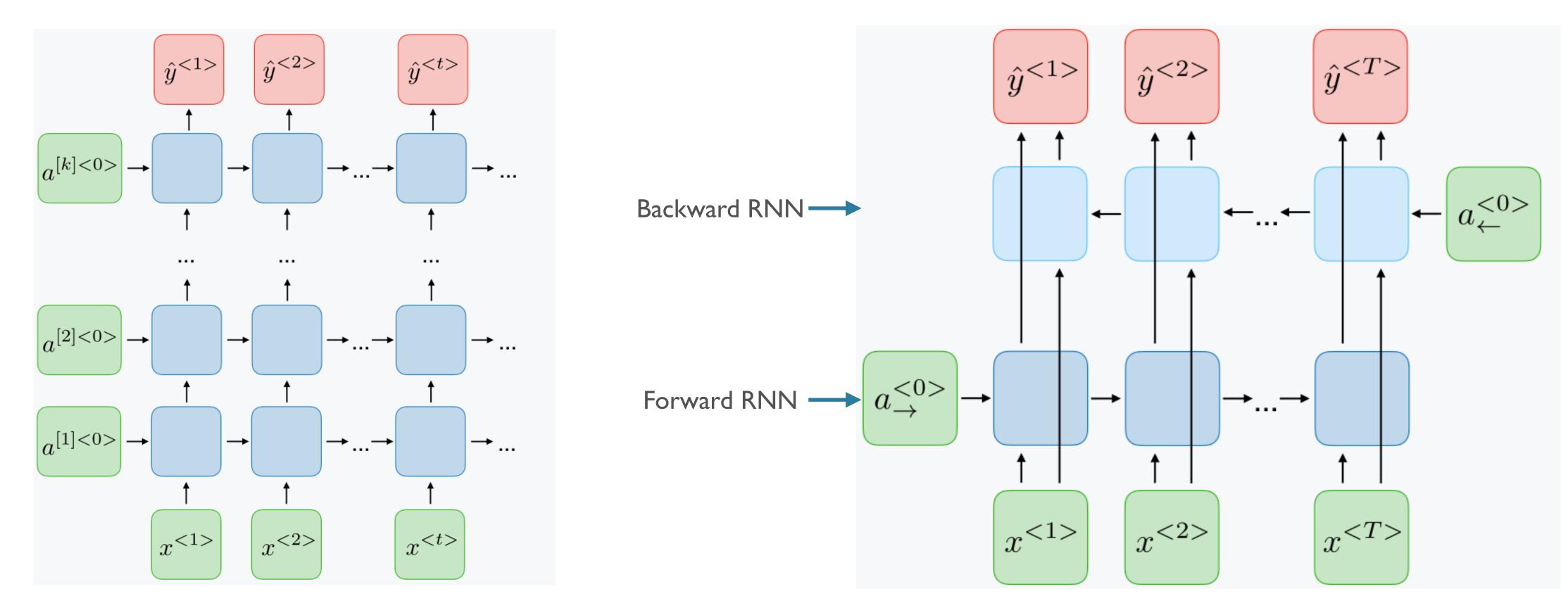
Bidirectional RNNs:



Source: RNN cheat sheet



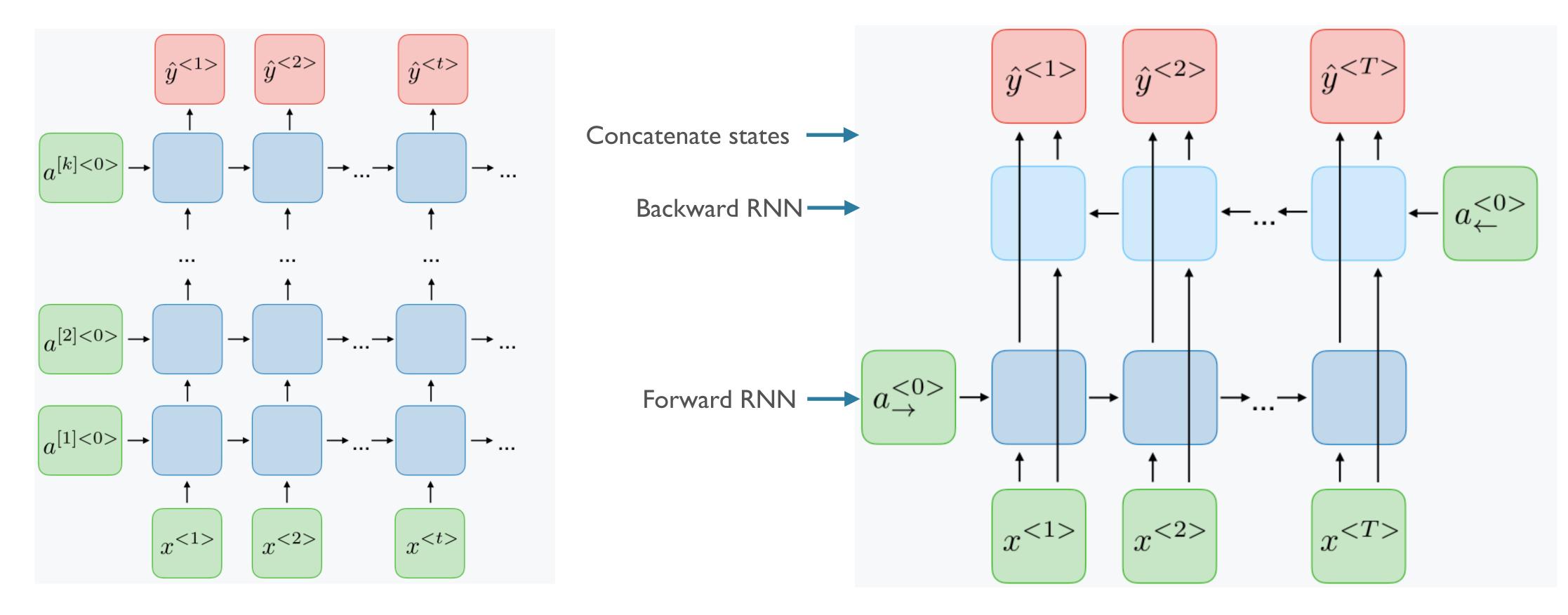
• Deep RNNs:



• Bidirectional RNNs:

Source: RNN cheat sheet

• Deep RNNs:



• Bidirectional RNNs:

Source: RNN cheat sheet

Batching in RNNs

- Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]
- But what is sequence length??
 - "This is the first example </s>": 6
 - "This is another </s>": 4

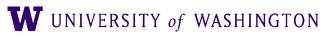
Padding and Masking

- Step 1: pad all sequences in batch to be of the same length
 - "This is the first example </s>": 6
 - "This is another </s> PAD PAD": 6
- Step 2: build a "mask" (1 = True token, 0 = padding)

 1
 1
 1
 1
 1
 1

 1
 1
 1
 1
 1
 1
 1

 1
 1
 1
 1
 0
 0
- Step 3: use mask to tell model what to ignore, either
 - Select correct final states [classification]
 - Multiply losses in tagging tasks [LM]



Summary

- RNNs allow for neural processing of sequential data
- In principle, should help models capture long-distance dependencies (e.g. number agreement, selectional preferences, ...)
 - Maintain a state over time
 - Repeatedly apply the same weights
 - as opposed to n-gram models, which cannot build such dependencies
- Uses: classification, tagging
- Extensions: deep, bidirectional

Next Time

- Discuss a technical problem in training Vanilla RNNs
 - Vanishing gradients
- Introduce gating-based RNNs
 - LSTMs
 - GRUs
 - Strengths, weaknesses, differences

