
Recurrent Neural Networks: 
Vanishing Gradients, Gated Variants

Ling 575j: Deep Learning for NLP
C.M. Downey
Spring 2023

1

Vanishing Gradients

2

Vanishing/Exploding Gradients Problem
● BPTT with vanilla RNNs faces a major problem:

● The gradients can vanish (approach 0) across time

● This makes it hard/impossible to learn long distance dependencies, which are
rampant in natural language

3

Vanishing Gradients

4

Vanishing Gradients

5

source

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf

Vanishing Gradients

5

source

If these are small (depends on W), the effect from t=4 on t=1 will be very small

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf

Vanishing Gradients

6

source

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf

Vanishing Gradient Problem

7

source

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf

Vanishing Gradient Problem

8
Graves 2012

https://www.cs.toronto.edu/~graves/preprint.pdf

Vanishing Gradient Problem
● Gradient measures the effect of the past on the future

● If it vanishes between t and t+n, can’t tell if:

● There’s no dependency in fact

● The weights in our network just haven’t yet captured the dependency

9

Examples of long-distance dependencies
● Number agreement

● The keys ____

● The keys on the table ____

● The keys next to the book on top of the table ____

● Selectional Preferences
● The family moved from the city because they wanted a larger house.

● The team moved from the city because they wanted a larger market.

10

Gating Based RNNs: LSTM and GRU

11

LSTMs
● Long Short-Term Memory (Hochreiter and Schmidhuber 1997)

● The gold standard / default RNN

● If someone says “RNN” now, they almost always mean “LSTM”

● Originally: to solve the vanishing/exploding gradient problem for RNNs

● Vanilla: re-writes the entire hidden state at every time-step

● LSTM: separate hidden state and memory

● Read, write to/from memory; can preserve long-term information

12

https://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735

LSTMs

13

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

LSTMs

13

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

🤔🤔🤷🤮

LSTMs

13

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

🤔🤔🤷🤮

● Key innovation:

●
● : a memory cell

● Reading/writing (smooth)
controlled by gates

● : forget gate

● : input gate

● : output gate

ct, ht = f(xt, ct−1, ht−1)
ct

ft
it
ot

LSTMs

14Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

14

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

14

Element-wise multiplication:
0: erase
1: retain

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

14

Element-wise multiplication:
0: erase
1: retain

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

14

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

14

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values

Add new values to memory

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

14

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

14

Element-wise multiplication:
0: erase
1: retain

: which cells to outputot ∈ [0,1]m

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs solve vanishing gradients

15
Graves 2012

https://www.cs.toronto.edu/~graves/preprint.pdf

16

https://www.aclweb.org/anthology/N19-1002/

Cell dynamics for storing number info

17

“The BiLSTM Hegemony”
● Chris Manning, in 2017:

18

source

https://nlp.stanford.edu/~manning/talks/Simons-Institute-Manning-2017.pdf

Gated Recurrent Unit (GRU)
● Cho et al 2014: gated like LSTM, but no separate memory cell

● “Collapses” execution/control and memory

● Fewer gates = fewer parameters, higher speed

● Update gate

● Reset gate

19

ut = σ(Wuht−1 + Uuxt + bu)
rt = σ(Wrht−1 + Urxt + br)
h̃t = tanh(Wh(rt ⊙ ht−1) + Uhxt + bh)
ht = (1 − ut) ⊙ ht−1 + ut ⊙ h̃t

Gated Recurrent Unit

20
source

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM vs GRU
● Generally: LSTM a good default

choice

● GRU can be used if speed and fewer
parameters are important

● Full differences between them not
fully understood

● Performance often comparable, but:
LSTMs can store unboundedly large
values in memory, and seem to e.g.
count better

21

source

https://arxiv.org/pdf/1805.04908.pdf

Odds and Ends

22

Fun with LSTM (character) LMs
● Generating text with an LM:

● Feed initial token (e.g. BOS, or just a word/character)

● Generate probability over next tokens

● Sample next token from this distribution

● Repeat until [EOS | max length | other criterion]

23

Fun with LSTM (character) LMs

24http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fun with LSTM (character) LMs

24http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fun with LSTM (character) LMs

24http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fun with LSTM (character) LMs
● “The Unreasonable Effectiveness of

RNNs” (Karpathy 2015):  
http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

25

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

ELMo (Embeddings from Language Models)
Peters et al NAACL 2018

26

https://www.aclweb.org/anthology/N18-1202/

ELMo (Embeddings from Language Models)
Peters et al NAACL 2018

26

https://www.aclweb.org/anthology/N18-1202/

ELMo

27

ELMo

27

ELMo Model

28Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf

ELMo Model

28Source: BERT paper

Deep
Bidirectional
LSTM
Language Model

https://arxiv.org/pdf/1810.04805.pdf

Summary
● Vanilla / Simple / Elman RNNs:

● Powerful, but susceptible to vanishing gradients

● Because re-write entire hidden state each time step

● LSTMs + GRUs:

● Use gates to control information flow

● Additive connections across time steps help alleviate vanishing gradient problem

● Interpretable and very powerful

● Moving forward: sequence-to-sequence (+ attention), and then overcoming a
major RNN bottleneck (Transformers)

29

