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Vanishing/Exploding Gradients Problem
● BPTT with vanilla RNNs faces a major problem:

● The gradients can vanish (approach 0) across time

● This makes it hard/impossible to learn long distance dependencies, which are 
rampant in natural language
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source

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf
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source

If these are small (depends on W), the effect from t=4 on t=1 will be very small

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf
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source
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Vanishing Gradient Problem
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Graves 2012

https://www.cs.toronto.edu/~graves/preprint.pdf


Vanishing Gradient Problem
● Gradient measures the effect of the past on the future

● If it vanishes between t and t+n, can’t tell if:

● There’s no dependency in fact

● The weights in our network just haven’t yet captured the dependency

9



Examples of long-distance dependencies
● Number agreement

● The keys ____

● The keys on the table ____

● The keys next to the book on top of the table ____

● Selectional Preferences
● The family moved from the city because they wanted a larger house.

● The team moved from the city because they wanted a larger market.
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Gating Based RNNs: LSTM and GRU
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LSTMs
● Long Short-Term Memory (Hochreiter and Schmidhuber 1997)

● The gold standard / default RNN

● If someone says “RNN” now, they almost always mean “LSTM”

● Originally: to solve the vanishing/exploding gradient problem for RNNs

● Vanilla: re-writes the entire hidden state at every time-step

● LSTM: separate hidden state and memory

● Read, write to/from memory; can preserve long-term information
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https://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735


LSTMs
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ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)
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● Key innovation:

●
● : a memory cell

● Reading/writing (smooth) 
controlled by gates

● : forget gate

● : input gate

● : output gate

ct, ht = f(xt, ct−1, ht−1)
ct

ft
it
ot
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14Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs solve vanishing gradients
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Graves 2012

https://www.cs.toronto.edu/~graves/preprint.pdf
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https://www.aclweb.org/anthology/N19-1002/


Cell dynamics for storing number info
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“The BiLSTM Hegemony”
● Chris Manning, in 2017:
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source

https://nlp.stanford.edu/~manning/talks/Simons-Institute-Manning-2017.pdf


Gated Recurrent Unit (GRU)
● Cho et al 2014: gated like LSTM, but no separate memory cell

● “Collapses” execution/control and memory

● Fewer gates = fewer parameters, higher speed

● Update gate

● Reset gate

19

ut = σ(Wuht−1 + Uuxt + bu)
rt = σ(Wrht−1 + Urxt + br)
h̃t = tanh(Wh(rt ⊙ ht−1) + Uhxt + bh)
ht = (1 − ut) ⊙ ht−1 + ut ⊙ h̃t



Gated Recurrent Unit
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source

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM vs GRU
● Generally: LSTM a good default 

choice

● GRU can be used if speed and fewer 
parameters are important

● Full differences between them not 
fully understood

● Performance often comparable, but: 
LSTMs can store unboundedly large 
values in memory, and seem to e.g. 
count better
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source

https://arxiv.org/pdf/1805.04908.pdf


Odds and Ends
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Fun with LSTM (character) LMs
● Generating text with an LM:

● Feed initial token (e.g. BOS, or just a word/character)

● Generate probability over next tokens

● Sample next token from this distribution

● Repeat until [EOS | max length | other criterion]
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Fun with LSTM (character) LMs
● “The Unreasonable Effectiveness of 

RNNs” (Karpathy 2015):  
http://karpathy.github.io/2015/05/21/rnn-
effectiveness/ 
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


ELMo (Embeddings from Language Models)
Peters et al NAACL 2018

26

https://www.aclweb.org/anthology/N18-1202/
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https://www.aclweb.org/anthology/N18-1202/
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ELMo Model

28Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf


ELMo Model

28Source: BERT paper

Deep
Bidirectional
LSTM
Language Model

https://arxiv.org/pdf/1810.04805.pdf


Summary
● Vanilla / Simple / Elman RNNs:

● Powerful, but susceptible to vanishing gradients

● Because re-write entire hidden state each time step

● LSTMs + GRUs:

● Use gates to control information flow

● Additive connections across time steps help alleviate vanishing gradient problem

● Interpretable and very powerful

● Moving forward: sequence-to-sequence (+ attention), and then overcoming a 
major RNN bottleneck (Transformers)
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