## Edugrad

Ling 575j: Deep Learning for NLP
C.M. Downey

## Edugrad, intro

- https://github.com/shanest/edugrad
- Minimal re-implementation of PyTorch API, for educational purposes
- Forward/backward API for operations
- Automatic differentiation via backprop
- Dynamic computation graph
- Why? Modern DL libraries have so much additional cruft that you cannot chase back lots of method calls to their implementations.
- E.g. what really happens when you call `loss.backward()'?
- NB: no performance optimizations, no GPU usage, etc. in edugrad


## Edugrad: Tensor

- Tensor: wrapper around a numpy array (stored in .value attribute)
- value: np array
- grad: current gradient! (Set to 0 initially, populated during back propagation)

```
>>> import numpy as np
>>> from edugrad.tensor import Tensor
>>> t1 = Tensor(np.array([[1, 2], [3, 4]]))
>>> t2 = Tensor(np.array([[1, 2], [3, 4]]))
>>> t1 + t2
<edugrad.tensor.Tensor object at 0x7f97a81d5940>
>>> (t1 + t2).value
array([[2, 4],
    [6, 8]])
```

- Primary operators overloaded: +, -, (raise to a power)
- More on implementation of those in a second


## Edugrad: Operation

- Operation: defines forward/backward
- In forward/backward: np arrays, not Tensors
- @tensor_op:
- Takes an Operation, turns it into a method that takes Tensor arguments and returns Tensor outputs
- And which builds the computation graph dynamically
- @: decorator; equivalent to: add = tensor_op(add)
- Basic ops provided:
- https://github.com/shanest/edugrad/blob/master/ edugrad/ops.py
@tensor_op
class add(Operation):
@staticmethod
def forward(ctx, a, b): return a + b
@staticmethod
def backward(ctx, grad_output):
return grad_output, grad_output
>>> from edugrad.ops import add >>> add(t1, t2).value array([[2, 4],
$[6,8]])$


## Edugrad: nn.Module

- edugrad.nn.Module:
- As in PyTorch, basic model class
- Stores parameters [accessed via .parameters()]
- Can be nested (modules within modules)
- Implements `forward`
- Defining a custom module:
- Sub-class nn.Module
- Initialize params in $\qquad$ init
- Implement custom forward method


## Edugrad: Linear Module example

class Linear(Module):
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
):
"""A Linear module computes defines weights $W$, optionally biases $b$, and computers $w X+b$.

Weight vector will have shape (input size, output size)

## Args:

input_size: dimension of input vectors output_size: dimension of output vectors initializer: how to initialize weights and biases bias: whether or not to include the bias term; not needed for, e.g. embeddings
"""
super(Linear, self).__init__()
scale = 1 / np.sqrt(input_size)
self.weight = Tensor(uniform_initializer((input_size, output_size), scale=scale), name="W") self.has_bias = bias
if self.has_bias:
\# biases initialize to 0
self.bias = Tensor(uniform_initializer((output_size,), scale=scale), name="b")

Always do this first!!

## Define

 parameters
## Edugrad: Linear Module

```
def forward(self, inputs: Tensor):
    mul_node = ops.matmul(inputs, self.weight)
    if self.has_bias:
        # NOTE: this is a hack-ish way of handling shape issues with biases
        expanded_biases = ops.copy_rows(self.bias, num=inputs.value.shape[0])
        return ops.add(mul_node, expanded_biases)
    return mul_node
```


## Edugrad: Basic Training Demo

- https://github.com/shanest/edugrad/blob/ master/examples/toy half sum/main.py
- Trains an MLP on $f(x)=\operatorname{sum}(x) / 2$ for bit vectors $x$
- MLP as a nn.Module:
- NB: don't hard-code hyper-parameters like this :)

```
class MLP(nn.Module):
    def __init__(self, input_size, output_size):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_size, 32)
        self.fc2 = nn.Linear(32, 32)
        self.output = nn.Linear(32, output_size)
    def forward(self, inputs):
        hidden = edugrad.ops.relu(self.fc1(inputs))
        hidden = edugrad.ops.relu(self.fc2(hidden))
        return self.output(hidden)
```


## Training Loop

```
model = MLP(input_size, 1)
optimizer = edugrad.optim.SGD(model.parameters(), lr=1e-3)
train_iterator = edugrad.data.BatchIterator(batch_size=batch_size)
for epoch in range(num_epochs):
    total_loss = 0.0
    for batch in train_iterator(inputs, targets):
        predicted = model(batch.inputs)
        loss = edugrad.ops.mse_loss(predicted, batch.targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss += loss.value
    print(f"Epoch {epoch} loss: {total_loss / train_iterator.num_batches}")
```

