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Learning outcomes
•Describe how speech data differs from textual data

•Describe the steps needed to convert speech data to a format neural nets can 
use, including some advantages and disadvantages
◦ MFCCs/log mel spectrograms

◦ Raw speech data

◦ wav2vec

•Identify loss functions that are commonly used for speech recognition

•Describe how a neural network’s output is decoded and scored to yield the final 
sequence of recognized words in speech recognition



Some speech-related tasks
•There are many speech-related tasks performed with neural nets

•(Automatic) speech recognition (ASR): produce textual data from acoustic speech data
◦ We will focus on this task today

•Speech synthesis (text-to-speech; TTS): produce acoustic speech data from text

•Speaker diarization: tag which speaker is speaking in a region of speech

•Forced alignment: automatically place boundaries between speech segments
◦ This is my specialty

•Keyword spotting: detect the presence of certain important words in a recording

•Automated acoustic measurements: measure properties like formant values or pitch 
without needing to set speaker-specific parameters

•Wake word detection: detect words that signal the beginning of a user action (like 
“Alexa” or “Hey, Google”)



Basic speech concepts
•In phonetics, we talk about speech as an acoustic signal

•Signal has different frequency components that make it up

•Those frequency components are related to speech sounds and words
◦ Though this relationship is remarkably complex

•Our general goal in ASR is to take this speech signal and get words out of it



Speech recognition pipeline

Acoustic 
representation

• How is speech 
represented?

Acoustic model

• Maps speech to 
recognition units

Decoding

• Convert model output 
to symbols

Language model

• Use probability to 
score possible 
outputs



Acoustic representation
CHOOSING A FORMAT FOR SPEECH



Time and frequency
•Recordings are stored as series of 
amplitude samples over time
◦ This is time-domain representation

•We can convert to frequency-domain 
representation using Fourier transform 
and get a power spectrum
◦ This is a frequency-domain

representation

•Usually easier to analyze speech in the 
frequency domain than the time 
domain



Audio formats for neural nets
•Using just a single spectrum won’t let 
us do anything interesting

•We need to use a time-frequency 
format
◦ A spectrogram is a time-frequency 

format

•Most common format for audio is 
what is known as mel frequency 
cepstral coefficients (MFCCs)
◦ At least historically…



MFCCs: Calculation
•To calculate

1. Start with power spectrum

2. Make frequency axis nonlinear along mel scale

3. Apply a 40-channel filterbank across the nonlinear frequency axis

4. Apply the discrete cosine transform to the filterbank

•MFCCs are useful because they are decorrelated from each other
◦ This was important for some simpler HMM+GMM models for speech rec

•They are also a compact way of representing the speech spectrum



MFCCs: Interpretation
•“Cepstral” is used to refer to a spectrum of a spectrum

◦ So, we have treated the power spectrum like a time-domain signal

•Each coefficient relates to a cosine wave of a different frequency being used to 
represent the power spectrum
◦ Similar to the sine waves in the Fourier transform

•MFCCs are, effectively, a compression of the power spectrum



MFCCs as features
•As with spectrograms, we will need to 
calculate MFCCs at various time points 
of the speech signal

•Standard: calculate MFCCs over 25 ms
windows of audio, spaced every 10 ms

•Also often use delta and delta-delta 
features
◦ Discrete versions of 1st and 2nd

derivative of MFCCs



(Log) mel spectrograms
•(Log) mel spectrograms became more popular with the 
popularity of neural nets
◦ MFCCs had some convenient properties when using 

HMM+GMM models

•Have more information than MFCCs

•To calculate, do the same process as calculating 
MFCCs, but stop short of using the discrete cosine 
transform
◦ May apply an elementwise log function on the 

energies too; this produces units of dB instead of 
power

Standard spectrogram

Mel spectrogram



Raw audio as 
input

•If you configure some 
convolutional layers 
correctly, you can use raw 
audio as input

•See Zeghidour et al. (2018a, 
2018b)



wav2vec 
•Recent research has focused on self-
supervised models to generate speech 
features relevant to many tasks at once 
(Baveski et al., 2020; Schneider et al., 
2019)

•It is increasingly common to use 
wav2vec features or to fine tune large 
models for specific tasks/languages



Acoustic model
MAPPING FROM SPEECH TO RECOGNITION UNITS



What kind of output?
•We need to find a way to map from 
speech input to linguistic output

•It would be very convenient to map 
onto words themselves!
◦ Unfortunately, this is difficult and 

has needed a lot of compute

•Instead, we map from acoustics to 
phones (traditionally) or letters (more 
modern)

•Then, we search to find an optimal 
match between words and acoustics

“Please call Stella. 
Ask her to bring 
these things with 
her from the store.”



Common loss functions for ASR
•Categorical cross entropy (CCE, sometimes)

◦ 𝐶𝐶𝐸 ො𝑦, 𝑦 = −σ𝑖 log
𝑒ෞ𝑦𝑖

σ𝑗 𝑒
ෝ𝑦𝑗

◦ Used for multiclass classification
◦ Enforces separation of categories

•Connectionist temporal classification (CTC, Graves, 2006)
◦ Too complicated to write on a single line (see next slide for a snippet)
◦ Used for labeling problems where you have more time steps than labels
◦ Collapses repeated characters, so [bbiiitttt] = [bbit] = [bit]
◦ Uses a “blank” symbol to separate symbols and permit label collapsing



CTC code snippet

From the NNlib.jl deep learning 
function package in Julia:
https://github.com/FluxML/NNlib.jl

(This code was actually contributed 
to the package by me [initially in 
Flux.jl]!)

https://github.com/FluxML/NNlib.jl


Handling context
•Speech has allophonic relations and coarticulatory effects that need to be 
handled
◦ Learning so called “context-free” phones ends up not working so well

◦ That is, speech is sequential and contextual, just like text

•LSTMs were a go-to standard choice

•The advent of transformers gives another viable option for sequence modeling

•Convolutional layers are evergreen since they can extract abstract features from 
the raw audio

◦ With enough depth, they can model sequences too



What relationship should we learn?
•Mapping acoustics directly to words is difficult

•More manageable to map to smaller units

•Phones are a more manageable choice, though letters/graphs are increasingly 
becoming a common output format

•Some researchers say they are classifying “phonemes,” though in practice they 
are classifying phones
◦ Different disciplines are, of course, allowed to have different terminology

•We can use output sequence of phones to map to words since words can be 
represented as phones



More on 
relationships

•Often, goal is to minimize word error rate or phone 
error rate

•This is rather hard to directly optimize in the neural 
net training
◦ Which is where the CTC loss comes in

•CTC loss considers all possible paths through 
phones/letters that will lead to the desired output



Decoding and language 
models
FROM MODEL OUTPUT TO WORDS



What is decoding?
•Our neural network has given us a series of probabilities of each phone label

◦ This doesn’t actually give us words yet!

•We need a way to algorithmically convert these probabilities to words
◦ That is, we need to decode the network output

•If we know in advance what the words are, like for forced alignment, we can use 
a simpler search to determine an optimal sequence of phones that gives that 
word sequence

•Otherwise, we need to use more sophisticated algorithms

◦ These algorithms often model language structure as well



Easiest decoding
•Choose the most probable phone at 
every time point

•Graves et al. (2006) call this best path 
decoding

•Works reasonably well considering 
how easy it is to implement

•Can result in poor labeling if the 
acoustic model is poor

◦ And, the acoustic model is always 
poor… That is, never excellent



Decoding in practice
•How can we choose between possible outputs like “the stuff he knows will get 
him in trouble” or “the stuffy nose will get him in trouble”?

•Acoustic models aren’t perfect, so we help with language knowledge
◦ Historically, n-gram probabilities like trigrams

◦ Now, transformer-based LMs are becoming a common choice as well

•Language model paired with beam search to score possible outputs

•“stuff he knows” is more probable than “stuffy nose”
◦ Though, trigrams may not actually capture this



Summary
•ASR with deep neural networks has four main parts

1. Acoustic input
◦ Often represented as mel frequency cepstral coefficients

2. Acoustic model
◦ Context-aware neural net that predicts phone/letter categories

3. Decoding algorithm
◦ Usually beam search over the language’s vocabulary

4. Language model
◦ Needs to yield probabilities over different word sequences
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