Neural nets for speech signal processing

Ling 574 guest lecture

Matthew C. Kelley, Dept. of Linguistics, University of Washington

Learning outcomes

•Describe how speech data differs from textual data

•Describe the steps needed to convert speech data to a format neural nets can use, including some advantages and disadvantages

- MFCCs/log mel spectrograms
- Raw speech data
- wav2vec

•Identify loss functions that are commonly used for speech recognition

•Describe how a neural network's output is decoded and scored to yield the final sequence of recognized words in speech recognition

Some speech-related tasks

- •There are many speech-related tasks performed with neural nets
- •(Automatic) speech recognition (ASR): produce textual data from acoustic speech data • We will focus on this task today
- •Speech synthesis (text-to-speech; TTS): produce acoustic speech data from text
- •Speaker diarization: tag which speaker is speaking in a region of speech
- Forced alignment: automatically place boundaries between speech segments
 This is my specialty
- •Keyword spotting: detect the presence of certain important words in a recording
- •Automated acoustic measurements: measure properties like formant values or pitch without needing to set speaker-specific parameters
- •Wake word detection: detect words that signal the beginning of a user action (like "Alexa" or "Hey, Google")

Basic speech concepts

- •In phonetics, we talk about speech as an acoustic signal
- •Signal has different frequency components that make it up
- •Those frequency components are related to speech sounds and words • Though this relationship is *remarkably* complex
- •Our general goal in ASR is to take this speech signal and get words out of it

Speech recognition pipeline

Acoustic representation

• How is speech represented?

Acoustic model

• Maps speech to recognition units

Decoding

• Convert model output to symbols

Language model

 Use probability to score possible outputs

Acoustic representation

CHOOSING A FORMAT FOR SPEECH

Time and frequency

- Recordings are stored as series of amplitude samples over time
 - This is **time-domain** representation
- •We can convert to frequency-domain representation using Fourier transform and get a **power spectrum**
 - This is a **frequency-domain** representation
- •Usually easier to analyze speech in the frequency domain than the time domain

Audio formats for neural nets

- •Using just a single spectrum won't let us do anything interesting
- •We need to use a time-frequency format
 - A spectrogram is a time-frequency format
- Most common format for audio is what is known as mel frequency cepstral coefficients (MFCCs)
 - At least historically...

MFCCs: Calculation

•To calculate

- 1. Start with power spectrum
- 2. Make frequency axis nonlinear along mel scale
- 3. Apply a 40-channel filterbank across the nonlinear frequency axis
- 4. Apply the discrete cosine transform to the filterbank
- •MFCCs are useful because they are decorrelated from each other
 - This was important for some simpler HMM+GMM models for speech rec
- •They are also a compact way of representing the speech spectrum

MFCCs: Interpretation

•"Cepstral" is used to refer to a spectrum of a spectrum

• So, we have treated the power spectrum like a time-domain signal

•Each coefficient relates to a cosine wave of a different frequency being used to represent the power spectrum

• Similar to the sine waves in the Fourier transform

•MFCCs are, effectively, a compression of the power spectrum

MFCCs as features

- •As with spectrograms, we will need to calculate MFCCs at various time points of the speech signal
- •Standard: calculate MFCCs over 25 ms windows of audio, spaced every 10 ms
- •Also often use delta and delta-delta features
 - Discrete versions of 1st and 2nd derivative of MFCCs

Standard spectrogram

(Log) mel spectrograms

- •(Log) mel spectrograms became more popular with the popularity of neural nets
 - MFCCs had some convenient properties when using HMM+GMM models
- Have more information than MFCCs
- •To calculate, do the same process as calculating MFCCs, but stop short of using the discrete cosine transform
 - May apply an elementwise log function on the energies too; this produces units of dB instead of power

Mel spectrogram

Figure 1: Overview of the fully convolutional architecture.

Raw audio as input

- If you configure some convolutional layers correctly, you can use raw audio as input
- •See Zeghidour et al. (2018a, 2018b)

Figure 1: Illustration of our framework which jointly learns contextualized speech representations and an inventory of discretized speech units.

wav2vec

- Recent research has focused on selfsupervised models to generate speech features relevant to many tasks at once (Baveski et al., 2020; Schneider et al., 2019)
- It is increasingly common to use wav2vec features or to fine tune large models for specific tasks/languages

Acoustic model

MAPPING FROM SPEECH TO RECOGNITION UNITS

What kind of output?

- •We need to find a way to map from speech input to linguistic output
- It would be very convenient to map onto words themselves!
 - Unfortunately, this is difficult and has needed a lot of compute
- Instead, we map from acoustics to phones (traditionally) or letters (more modern)
- •Then, we search to find an optimal match between words and acoustics

"Please call Stella. Ask her to bring these things with her from the store."

Common loss functions for ASR

•Categorical cross entropy (CCE, sometimes)

$$\circ CCE(\hat{y}, y) = -\sum_{i} \log\left(\frac{e^{\hat{y}_{i}}}{\sum_{j} e^{\hat{y}_{j}}}\right)$$

Used for multiclass classification

- Enforces separation of categories
- •Connectionist temporal classification (CTC, Graves, 2006)
 - Too complicated to write on a single line (see next slide for a snippet)
 - Used for labeling problems where you have more time steps than labels
 - Collapses repeated characters, so [bbiiitttt] = [bbit] = [bit]
 - Uses a "blank" symbol to separate symbols and permit label collapsing

CTC code snippet

- 39 function ctc_alpha(ŷ::AbstractArray, y)
- 40 typed_zero = $zero(\hat{y}[1])$
- 41 $\hat{y} = logsoftmax(\hat{y})$
- 42 blank = size(\hat{y} , 1)
- 43 z' = add_blanks(y, blank)
- 44 T = size(\hat{y} , 2)
- 45 U' = length(z')
- 46
- 47 $\alpha = fill(log(typed_zero), U', T)$
- 48 $\alpha[1,1] = \hat{y}[blank, 1]$
- 49 $\alpha[2,1] = \hat{y}[z'[2], 1]$
- 50 for t=2:T
- 51 bound = max(1, U' 2(T t) 1)
- 52 for u=bound:U'
- 53 if u == 1
- 54 $\alpha[u,t] = \alpha[u, t-1]$
- 55 else
- 56 $\alpha[u,t] = logaddexp(\alpha[u, t-1], \alpha[u-1, t-1])$
- 57 58 # array bounds check and f(u) function from Eq. 7.9
- 59 if u > 2 && !(z'[u] == blank || z'[u-2] == z'[u])
- 60 $\alpha[u,t] = \log addexp(\alpha[u,t], \alpha[u-2,t-1])$
- 61 end
- 62 end
- 63 $\alpha[u,t] += \hat{y}[z'[u], t]$
- 64 end
- 65 end
 - return (loss=-1 * logaddexp(α[end,T], α[end-1, T]), alpha=α, zprime=z', logsoftyhat=ŷ)
- 66 r 67 end

From the NNlib.jl deep learning function package in Julia: https://github.com/FluxML/NNlib.jl

(This code was actually contributed to the package by me [initially in Flux.jl]!)

Handling context

- Speech has allophonic relations and coarticulatory effects that need to be handled
 - Learning so called "context-free" phones ends up not working so well
 - That is, speech is sequential and contextual, just like text
- LSTMs were a go-to standard choice
- •The advent of transformers gives another viable option for sequence modeling
- •Convolutional layers are evergreen since they can extract abstract features from the raw audio
 - With enough depth, they can model sequences too

What relationship should we learn?

•Mapping acoustics directly to words is difficult

•More manageable to map to smaller units

•Phones are a more manageable choice, though letters/graphs are increasingly becoming a common output format

•Some researchers say they are classifying "phonemes," though in practice they are classifying phones

• Different disciplines are, of course, allowed to have different terminology

•We can use output sequence of phones to map to words since words can be represented as phones

More on relationships

- •Often, goal is to minimize word error rate or phone error rate
- •This is rather hard to directly optimize in the neural net training
 - Which is where the CTC loss comes in
- •CTC loss considers all possible paths through phones/letters that will lead to the desired output

Word Error Rate = $100 \times \frac{\text{Insertions} + \text{Substitutions} + \text{Deletions}}{\text{Total Words in Correct Transcript}}$

Decoding and language models

FROM MODEL OUTPUT TO WORDS

What is decoding?

•Our neural network has given us a series of probabilities of each phone label • This doesn't actually give us words yet!

•We need a way to algorithmically convert these probabilities to words • That is, we need to **decode** the network output

•If we know in advance what the words are, like for forced alignment, we can use a simpler search to determine an optimal sequence of phones that gives that word sequence

•Otherwise, we need to use more sophisticated algorithms

• These algorithms often model language structure as well

Easiest decoding

- •Choose the most probable phone at every time point
- •Graves et al. (2006) call this **best path decoding**
- •Works reasonably well considering how easy it is to implement
- •Can result in poor labeling if the acoustic model is poor
 - And, the acoustic model is always poor... That is, never excellent

Decoding in practice

•How can we choose between possible outputs like "the stuff he knows will get him in trouble" or "the stuffy nose will get him in trouble"?

- •Acoustic models aren't perfect, so we help with language knowledge
 - Historically, *n*-gram probabilities like trigrams
 - Now, transformer-based LMs are becoming a common choice as well
- •Language model paired with **beam search** to score possible outputs
- •"stuff he knows" is more probable than "stuffy nose"
 - Though, trigrams may not actually capture this

Summary

•ASR with deep neural networks has four main parts

- 1. Acoustic input
 - Often represented as mel frequency cepstral coefficients
- 2. Acoustic model
 - Context-aware neural net that predicts phone/letter categories
- 3. Decoding algorithm
 - Usually beam search over the language's vocabulary
- 4. Language model
 - Needs to yield probabilities over different word sequences

References

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., ... & Zhu, Z. (2016, June). Deep speech 2: End-to-end speech recognition in english and mandarin. In *International conference on machine learning* (pp. 173-182). PMLR.

Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in neural information processing systems, 33, 12449-12460.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. *Proceedings of the 23rd International Conference on Machine Learning*, 369–376. https://doi.org/10.1145/1143844.1143891

Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer.

Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. *PMLR*, *32*, 1764–1772. <u>http://proceedings.mlr.press/v32/graves14.html</u>

Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). wav2vec: Unsupervised pre-training for speech recognition. *arXiv preprint arXiv:1904.05862*.

Zeghidour, N., Usunier, N., Kokkinos, I., Schaiz, T., Synnaeve, G., & Dupoux, E. (2018, April). Learning filterbanks from raw speech for phone recognition. In 2018 IEEE international conference on acoustics, speech and signal Processing (ICASSP) (pp. 5509-5513). IEEE.

Zeghidour, N., Xu, Q., Liptchinsky, V., Usunier, N., Synnaeve, G., & Collobert, R. (2018). Fully convolutional speech recognition. *arXiv preprint arXiv:1812.06864*.